Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
Bioinformatics Core, Purdue University, West Lafayette, IN, USA.
EBioMedicine. 2024 Aug;106:105227. doi: 10.1016/j.ebiom.2024.105227. Epub 2024 Jul 16.
A highly effective vaccine for malaria remains an elusive target, at least in part due to the under-appreciated natural parasite variation. This study aimed to investigate genetic and structural variation, and immune selection of leading malaria vaccine candidates across the Plasmodium falciparum's life cycle.
We analysed 325 P. falciparum whole genome sequences from Zambia, in addition to 791 genomes from five other African countries available in the MalariaGEN Pf3k Database. Ten vaccine antigens spanning three life-history stages were examined for genetic and structural variations, using population genetics measures, haplotype network analysis, and 3D structure selection analysis.
Among the ten antigens analysed, only three in the transmission-blocking vaccine category display P. falciparum 3D7 as the dominant haplotype. The antigens AMA1, CSP, MSP1 and CelTOS, are much more diverse than the other antigens, and their epitope regions are under moderate to strong balancing selection. In contrast, Rh5, a blood stage antigen, displays low diversity yet slightly stronger immune selection in the merozoite-blocking epitope region. Except for CelTOS, the transmission-blocking antigens Pfs25, Pfs48/45, Pfs230, Pfs47, and Pfs28 exhibit minimal diversity and no immune selection in epitopes that induce strain-transcending antibodies, suggesting potential effectiveness of 3D7-based vaccines in blocking transmission.
These findings offer valuable insights into the selection of optimal vaccine candidates against P. falciparum. Based on our results, we recommend prioritising conserved merozoite antigens and transmission-blocking antigens. Combining these antigens in multi-stage approaches may be particularly promising for malaria vaccine development initiatives.
Purdue Department of Biological Sciences; Puskas Memorial Fellowship; National Institute of Allergy and Infectious Diseases (U19AI089680).
一种高效的疟疾疫苗仍然是一个难以实现的目标,至少部分原因是人们对寄生虫的自然变异认识不足。本研究旨在调查疟原虫生命周期中主要疫苗候选物的遗传和结构变异以及免疫选择。
我们分析了来自赞比亚的 325 个疟原虫全基因组序列,此外还分析了 MalariaGEN Pf3k 数据库中来自其他五个非洲国家的 791 个基因组。使用群体遗传学措施、单倍型网络分析和 3D 结构选择分析,对跨越三个生命史阶段的 10 种疫苗抗原进行了遗传和结构变异分析。
在所分析的 10 种抗原中,只有三种在阻断传播疫苗类别中以 P. falciparum 3D7 作为主要单倍型。抗原 AMA1、CSP、MSP1 和 CelTOS 的多样性比其他抗原大得多,其表位区域受到中等至强的平衡选择。相比之下,作为血期抗原的 Rh5 在裂殖体阻断表位区域的多样性较低,但免疫选择稍强。除 CelTOS 外,阻断传播的抗原 Pfs25、Pfs48/45、Pfs230、Pfs47 和 Pfs28 在诱导跨株抗体的表位中表现出最小的多样性和无免疫选择,这表明基于 3D7 的疫苗在阻断传播方面可能具有有效性。
这些发现为选择针对疟原虫的最佳疫苗候选物提供了有价值的见解。根据我们的结果,我们建议优先选择保守的裂殖体抗原和阻断传播的抗原。将这些抗原结合在多阶段方法中可能对疟疾疫苗开发计划特别有希望。
普渡大学生物科学系;普斯卡什纪念奖学金;美国国立过敏和传染病研究所(U19AI089680)。