Suppr超能文献

银纳米线和双功能单体对异丙隆分析的分子印迹电化学传感器的协同信号放大效应。

Synergistic signal-amplification effect of silver nanowires and bifunctional monomers on molecularly imprinted electrochemical sensor for diuron analysis.

机构信息

Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.

Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, China.

出版信息

Biosens Bioelectron. 2024 Oct 15;262:116570. doi: 10.1016/j.bios.2024.116570. Epub 2024 Jul 14.

Abstract

Molecularly imprinted polymers (MIP) have been widely owing to their specificity, however, their singular structure imposes limitations on their performance. Current enhancement methods, such as doping with inorganic nanomaterials or introducing various functional monomers, are limited and single, indicating that MIP performances require further advancement. In this work, a dual-modification approach that integrates both conductive inorganic nanomaterials and diverse bifunctional monomers was proposed to develop a multifunctional MIP-based electrochemical (MMIP-EC) sensor for diuron (DU) detection. The MMIP was synthesized through a one-step electrochemical copolymerization of silver nanowires (AgNWs), o-phenylenediamine (O-PD), and 3,4-ethylenedioxythiophene (EDOT). DU molecules could conduct fluent electron transfer within the MMIP layer through the interaction between anchored AgNWs and bifunctional monomers, and the abundant recognition sites and complementary cavity shapes ensured that the imprinted cavities exhibit high specificity. The current intensity amplified by the two modification strategies of MMIP (3.7 times) was significantly higher than the sum of their individual values (3.2 times), exerting a synergistic effect. Furthermore, the adsorption performance of the MMIP was characterized by examining the kinetics and isotherms of the adsorption process. Under optimal conditions, the MMIP-EC sensor exhibits a wide linear range (0.2 ng/mL to 10 μg/mL) for DU detection, with a low detection limit of 89 pg/mL and excellent selectivity (an imprinted factor of 10.4). In summary, the present study affords innovative perspectives for the fabrication of MIP-EC sensor with superior analytical performance.

摘要

分子印迹聚合物(MIP)因其特异性而被广泛应用,然而,其单一的结构限制了其性能。目前的增强方法,如掺杂无机纳米材料或引入各种功能单体,具有局限性和单一性,表明 MIP 性能需要进一步提高。在这项工作中,提出了一种将导电无机纳米材料和多种双功能单体相结合的双重修饰方法,用于开发基于分子印迹聚合物的多功能电化学(MMIP-EC)传感器,用于检测敌草隆(DU)。MMIP 是通过一步电化学共聚银纳米线(AgNWs)、邻苯二胺(O-PD)和 3,4-亚乙基二氧噻吩(EDOT)合成的。DU 分子可以通过锚定的 AgNWs 和双功能单体之间的相互作用在 MMIP 层内进行流畅的电子转移,丰富的识别位点和互补的空腔形状确保印迹空腔具有高特异性。通过 MMIP 的两种修饰策略(3.7 倍)放大的电流强度明显高于其各自值的总和(3.2 倍),发挥了协同作用。此外,通过研究吸附过程的动力学和等温线来表征 MMIP 的吸附性能。在最佳条件下,MMIP-EC 传感器对 DU 的检测具有较宽的线性范围(0.2 ng/mL 至 10 μg/mL),检测限低至 89 pg/mL,具有出色的选择性(印迹因子为 10.4)。总之,本研究为制备具有优异分析性能的 MIP-EC 传感器提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验