Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; School of Basic Medical Sciences, Central South University, Changsha 410013, China.
Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
Forensic Sci Int. 2024 Aug;361:112144. doi: 10.1016/j.forsciint.2024.112144. Epub 2024 Jul 14.
The weathering time of empty puparia could be important in predicting the minimum postmortem interval (PMImin). As corpse decomposition progresses to the skeletal stage, empty puparia often remain the sole evidence of fly activity at the scene. In this study, we used empty puparia of Sarcophaga peregrina (Diptera: Sarcophagidae) collected at ten different time points between January 2019 and February 2023 as our samples. Initially, we used the scanning electron microscope (SEM) to observe the surface of the empty puparia, but it was challenging to identify significant markers to estimate weathering time. We then utilized attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to detect the puparia spectrogram. Absorption peaks were observed at 1064 cm, 1236 cm, 1381 cm, 1538 cm, 1636 cm, 2852 cm, 2920 cm. Three machine learning models were used to regress the spectral data after dimensionality reduction using principal component analysis (PCA). Among them, eXtreme Gradient Boosting regression (XGBR) showed the best performance in the wavenumber range of 1800-600 cm, with a mean absolute error (MAE) of 1.20. This study highlights the value of refining these techniques for forensic applications involving entomological specimens and underscores the considerable potential of combining FTIR and machine learning in forensic practice.
空蛹的风化时间在预测最小死后间隔时间(PMImin)方面可能很重要。随着尸体分解进展到骨骼阶段,空蛹通常仍然是现场苍蝇活动的唯一证据。在这项研究中,我们使用了 2019 年 1 月至 2023 年 2 月期间在十个不同时间点收集的嗜尸性麻蝇(双翅目:麻蝇科)的空蛹作为我们的样本。最初,我们使用扫描电子显微镜(SEM)观察空蛹的表面,但很难识别出估计风化时间的显著标记。然后,我们利用衰减全内反射傅里叶变换红外光谱(ATR-FTIR)来检测蛹的光谱图。在 1064 cm、1236 cm、1381 cm、1538 cm、1636 cm、2852 cm、2920 cm 处观察到吸收峰。使用主成分分析(PCA)对降维后的光谱数据进行回归,我们使用了三个机器学习模型。其中,极端梯度提升回归(XGBR)在 1800-600 cm 的波数范围内表现出最佳性能,平均绝对误差(MAE)为 1.20。这项研究强调了改进这些技术在涉及昆虫学标本的法医学应用中的价值,并强调了 FTIR 和机器学习在法医学实践中的巨大潜力。