Bertino Francesca, Mukherjee Dibyanti, Bonora Massimo, Bagowski Christoph, Nardelli Jeannette, Metani Livia, Zanin Venturini Diletta Isabella, Chianese Diego, Santander Nicolas, Salaroglio Iris Chiara, Hentschel Andreas, Quarta Elisa, Genova Tullio, McKinney Arpana Arjun, Allocco Anna Lucia, Fiorito Veronica, Petrillo Sara, Ammirata Giorgia, De Giorgio Francesco, Dennis Evan, Allington Garrett, Maier Felicitas, Shoukier Moneef, Gloning Karl-Philipp, Munaron Luca, Mussano Federico, Salsano Ettore, Pareyson Davide, di Rocco Maja, Altruda Fiorella, Panagiotakos Georgia, Kahle Kristopher T, Gressens Pierre, Riganti Chiara, Pinton Paolo P, Roos Andreas, Arnold Thomas, Tolosano Emanuela, Chiabrando Deborah
Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy.
Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA.
Cell Rep Med. 2024 Jul 16;5(7):101647. doi: 10.1016/j.xcrm.2024.101647.
Congenital hydrocephalus (CH), occurring in approximately 1/1,000 live births, represents an important clinical challenge due to the limited knowledge of underlying molecular mechanisms. The discovery of novel CH genes is thus essential to shed light on the intricate processes responsible for ventricular dilatation in CH. Here, we identify FLVCR1 (feline leukemia virus subgroup C receptor 1) as a gene responsible for a severe form of CH in humans and mice. Mechanistically, our data reveal that the full-length isoform encoded by the FLVCR1 gene, FLVCR1a, interacts with the IP3R3-VDAC complex located on mitochondria-associated membranes (MAMs) that controls mitochondrial calcium handling. Loss of Flvcr1a in mouse neural progenitor cells (NPCs) affects mitochondrial calcium levels and energy metabolism, leading to defective cortical neurogenesis and brain ventricle enlargement. These data point to defective NPCs calcium handling and metabolic activity as one of the pathogenetic mechanisms driving CH.
先天性脑积水(CH)的发病率约为1/1000活产儿,由于对其潜在分子机制的了解有限,它是一个重要的临床挑战。因此,发现新的CH基因对于阐明导致CH脑室扩张的复杂过程至关重要。在这里,我们确定FLVCR1(猫白血病病毒C亚群受体1)是导致人类和小鼠严重形式CH的基因。从机制上讲,我们的数据表明,FLVCR1基因编码的全长异构体FLVCR1a与位于线粒体相关膜(MAM)上的IP3R3-VDAC复合体相互作用,该复合体控制线粒体钙处理。小鼠神经祖细胞(NPC)中Flvcr1a的缺失会影响线粒体钙水平和能量代谢,导致皮质神经发生缺陷和脑室扩大。这些数据表明,NPC钙处理和代谢活性缺陷是驱动CH的发病机制之一。