Department of Environmental Sciences, Tel-Hai College, Upper Galilee, 12210, Israel.
Department of Environmental Sciences, Tel-Hai College, Upper Galilee, 12210, Israel; MIGAL - Galilee Research Institute, Hydro-Geochemistry Laboratory, Kiryat Shmona, 11016, Israel.
Sci Total Environ. 2024 Oct 20;948:174719. doi: 10.1016/j.scitotenv.2024.174719. Epub 2024 Jul 15.
This research assesses the efficacy of two phosphorus (P) adsorbents as alternative fertilizers in promoting lettuce growth. A synthetic Mg/Al-layered double hydroxide (LDH) and an iron-based recycled water treatment residual (Fe-WTR), both enriched with P from dairy wastewater and added at three dosage levels. We hypothesized that the adsorbents' physicochemical nature will overshadow the biological efforts in the plant ecosystem to increase P solubility, impacting plant growth, nutritional composition, and metabolite profiles. Fe-WTR significantly enhanced lettuce biomass compared to LDH. Yet, elemental analysis revealed higher or equal P concentrations in the low-biomass LDH plants relative to other treatments. Phosphorus uptake appears to influence the assimilation of other nutrients that divided into two groups: calcium, magnesium, zinc, and copper with notable correlations to P and nitrogen, iron, aluminum, vanadium and manganese with low correlations to P. Conversely, P retained poor correlation with most metabolites whereas iron showed a higher correlation with numerous metabolites. Analysis of metabolites, encompassing carbohydrates, the Krebs cycle, amino acids, nucleic acids, and stress and regulatory pathways, revealed diminished levels in the LDH treatments. Overall, carbon assimilation (plant growth) was more effectively predicted by soil P availability (adsorbent type and dose) rather than by cellular P concentration, suggesting root signaling was at play, influencing carbohydrate translocation to the roots. Diminished levels of cellular sugars further affect metabolic pathways and iron uptake, thus restricting photosynthesis. The results illustrate the substantial influence of the P source on the plant's metabolic processes and soil biogeochemistry. The synthetic LDH adsorbent with high sorption capacity, tightly binds its substantial P pool, rendering it inaccessible and potentially disrupting rhizosphere biogeochemical interactions. In contrast, the chemical nature of Fe-WTR enabled efficient nutrients acquisition bioactivity. The study highlights Fe-WTR as a promising sustainable alternative to conventional fertilizers, emphasizing its potential scalability and adaptability in agricultural contexts.
本研究评估了两种磷(P)吸附剂作为替代肥料促进生菜生长的功效。一种是合成的 Mg/Al 层状双氢氧化物(LDH),另一种是富含来自奶制品废水的 P 的铁基再生水处理残渣(Fe-WTR),两者均添加到三个剂量水平。我们假设吸附剂的物理化学性质将掩盖植物生态系统中增加 P 溶解度的生物学努力,从而影响植物生长、营养成分和代谢物谱。Fe-WTR 显著提高了生菜的生物量,与 LDH 相比。然而,元素分析显示,低生物量 LDH 植物中的 P 浓度高于其他处理。磷吸收似乎影响了其他营养物质的同化,这些营养物质分为两组:钙、镁、锌和铜与 P 和氮显著相关,铁、铝、钒和锰与 P 相关性较低。相反,P 与大多数代谢物相关性较差,而铁与许多代谢物相关性较高。对代谢物的分析,包括碳水化合物、三羧酸循环、氨基酸、核酸以及应激和调节途径,揭示了 LDH 处理中代谢物水平降低。总体而言,土壤 P 供应(吸附剂类型和剂量)对碳同化(植物生长)的影响大于细胞内 P 浓度,这表明根系信号在起作用,影响碳水化合物向根部的转运。细胞内糖含量的降低进一步影响代谢途径和铁的吸收,从而限制光合作用。结果表明,P 源对植物的代谢过程和土壤生物地球化学有很大的影响。具有高吸附能力的合成 LDH 吸附剂紧密结合其大量的 P 库,使其无法获得,可能破坏根际生物地球化学相互作用。相比之下,Fe-WTR 的化学性质使其具有高效的营养获取生物活性。该研究强调了 Fe-WTR 作为传统肥料的有前途的可持续替代品,强调了其在农业背景下的潜在可扩展性和适应性。