Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Brain Connectome and Behaviour, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
Neurobiol Dis. 2024 Oct 1;200:106606. doi: 10.1016/j.nbd.2024.106606. Epub 2024 Jul 15.
The gut microbiota produces metabolites that enrich the host metabolome and play a part in host physiology, including brain functions. Yet the biological mediators of this gut-brain signal transduction remain largely unknown. In this study, the possible role of the gut microbiota metabolite indole, originating from tryptophan, was investigated. Oral administration of indole to simulate microbial overproduction of this compound in the gut consistently led to impaired locomotion and anxiety-like behaviour in both C3H/HeN and C57BL/6J mice. By employing c-Fos protein expression mapping in mice, we observed a noticeable increase in brain activation within the dorsal motor nucleus of the vagus nerve (DMX) and the locus coeruleus (LC) regions in a dose-dependent manner. Further immune co-labelling experiments elucidated that the primary cells activated within the LC were tyrosine hydroxylase positive. To delve deeper into the mechanistic aspects, we conducted chemogenetic activation experiments on LC norepinephrine neurons with two doses of clozapine N-oxide (CNO). Low dose of CNO at 0.5 mg/kg induced no change in locomotion but anxiety-like behaviour, while high dose of CNO at 2 mg/kg resulted in locomotion impairment and anxiety-like behaviour. These findings support the neuroactive roles of indole in mediating gut-brain communication. It also highlights the LC as a novel hub in the gut-brain axis, encouraging further investigations.
肠道微生物群产生的代谢物丰富了宿主代谢组,并在宿主生理学中发挥作用,包括大脑功能。然而,这种肠道-大脑信号转导的生物学介质在很大程度上仍然未知。在这项研究中,研究了肠道微生物群代谢物吲哚(源自色氨酸)的可能作用。口服吲哚以模拟肠道中这种化合物的微生物过度产生,一致导致 C3H/HeN 和 C57BL/6J 小鼠运动能力受损和焦虑样行为。通过对小鼠进行 c-Fos 蛋白表达图谱分析,我们观察到在迷走神经背核(DMX)和蓝斑核(LC)区域,大脑激活程度呈剂量依赖性显著增加。进一步的免疫共标实验阐明,LC 内被激活的主要细胞是酪氨酸羟化酶阳性的。为了更深入地研究机制方面,我们用两种剂量的氯氮平 N-氧化物(CNO)对 LC 去甲肾上腺素神经元进行了化学遗传激活实验。低剂量的 CNO(0.5mg/kg)不会引起运动能力的变化,但会引起焦虑样行为,而高剂量的 CNO(2mg/kg)会导致运动能力受损和焦虑样行为。这些发现支持了吲哚在介导肠道-大脑通讯中的神经活性作用。它还突出了 LC 作为肠道-大脑轴的一个新枢纽,鼓励进一步的研究。