Suppr超能文献

重症肌无力的血清代谢组学特征及其作为疾病监测生物标志物的潜在价值。

Serum metabolomic profile of myasthenia gravis and potential values as biomarkers in disease monitoring.

机构信息

Department of Neurology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201699, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China.

Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China.

出版信息

Clin Chim Acta. 2024 Aug 15;562:119873. doi: 10.1016/j.cca.2024.119873. Epub 2024 Jul 15.

Abstract

OBJECTIVE

Serum metabolites from 19 myasthenia gravis (MG) patients and 15 normal controls were analyzed via untargeted metabolomics, including 6 pre/post-treatment paired MG patients, to assess the value of serum metabolites as biomarkers in monitoring MG.

METHOD

Differential metabolites between MG patients and normal controls were identified through liquid and gas chromatography-mass spectrometry simultaneously. Principal component analysis and orthogonal partial least squares-discriminant analysis were conducted to identify the differential metabolites. Candidate metabolites and pathways associated with MG were selected through a random forest machine learning model.

RESULT

A total of 310 differential metabolites were identified with a threshold of variable projected importance > 1 and P value < 0.05. Among these, 158 metabolites were upregulated and 152 were downregulated. The random forest machine learning model selected 5 metabolites as potential biomarkers associated with MG: lignoceric acid (AUC=0.944), uridine diphosphate-N-acetylglucosamine (AUC=0.951), arachidonic acid (AUC=0.951), beta-glycerophosphoric acid (AUC=0.933), and L-Asparagine (AUC=0.877). Further analysis using 6 paired MG patients pre- and post-immunosuppression treatment revealed 25 upregulated and 6 downregulated metabolites in post-treatment serum, which might be relevant to disease intervention. The significance remains elusive due to the limited number of patients.

CONCLUSION

A subset of differential metabolites was identified in the serum of MG patients, some of which changed with immunosuppressive therapy. Small molecule metabolites may serve as valuable biomarkers for disease monitoring in MG.

摘要

目的

通过非靶向代谢组学分析 19 例重症肌无力(MG)患者和 15 例正常对照者的血清代谢物,包括 6 例治疗前后配对的 MG 患者,以评估血清代谢物作为监测 MG 的生物标志物的价值。

方法

采用液相色谱-质谱联用和气相色谱-质谱联用技术同时鉴定 MG 患者与正常对照组之间的差异代谢物。采用主成分分析和正交偏最小二乘判别分析识别差异代谢物。通过随机森林机器学习模型选择与 MG 相关的候选代谢物和途径。

结果

共鉴定出 310 个差异代谢物,其变量投影重要性>1 和 P 值<0.05。其中,158 个代谢物上调,152 个代谢物下调。随机森林机器学习模型选择 5 种潜在的与 MG 相关的生物标志物代谢物:木质素酸(AUC=0.944)、尿苷二磷酸-N-乙酰葡萄糖胺(AUC=0.951)、花生四烯酸(AUC=0.951)、β-甘油磷酸(AUC=0.933)和 L-天冬酰胺(AUC=0.877)。进一步对 6 例 MG 患者免疫抑制治疗前后的配对分析显示,治疗后血清中有 25 种代谢物上调,6 种代谢物下调,可能与疾病干预有关。由于患者数量有限,其意义尚不清楚。

结论

MG 患者血清中存在部分差异代谢物,其中一些随着免疫抑制治疗而改变。小分子代谢物可能作为 MG 疾病监测的有价值的生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验