González Pacheco Juan Ignacio, Maldonado Mariela Beatriz
Department of Chemical Engineering, Mendoza Regional Faculty, National Technological University, C. Rodriguez 273, M5502AJE, Mendoza, Argentina.
CONICET, National Scientific and Technical Research Council, Mendoza Technological Scientific Centre, Av. Ruiz Leal S/N - Parque Gral. San Martín, M5502IRA, Mendoza, Argentina.
Sci Rep. 2024 Jul 17;14(1):16513. doi: 10.1038/s41598-024-67348-4.
The study of diffusion in biological materials is crucial for fields like food science, engineering, and pharmaceuticals. Research that combines numerical and analytical methods is needed to better understand diffusive phenomena across various dimensions and under variable boundary conditions within food matrices. This study aims to bridge this gap by examining the diffusion of substances through biological materials analytically and numerically, calculating diffusivity and conducting surface analysis. The research proposes a process for sweetening Bing-type cherries (Prunus avium) using sucrose/xylitol solutions and a staining technique utilising erythrosine and red gardenia at varying concentrations (119, 238 and 357 ppm) and temperatures (40, 50 and 60 °C). Given the fruit's epidermis resistance, the effective diffusivities of skin were inferior to those in flesh. Temperature and concentration synergise in enhancing diffusion coefficients and dye penetration within the food matrix (357 ppm and 60 °C). Red gardenia displayed significant temperature-dependent variation (p = 0.001), whereas erythrosine dye remained stable by temperature changes (p > 0.05). Gardenia's effective diffusivities in cherry flesh and skin, at 357 ppm and 60 °C, 3.89E-08 and 6.61E-09 m/s, respectively, significantly differed from those obtained at lower temperatures and concentrations. The results highlight the temperature-concentration impacts on mass transfer calculations for food colouring processes and preservation methodologies.
生物材料中扩散的研究对于食品科学、工程和制药等领域至关重要。需要结合数值和分析方法的研究,以更好地理解食品基质中不同维度和可变边界条件下的扩散现象。本研究旨在通过对物质在生物材料中的扩散进行分析和数值研究、计算扩散系数并进行表面分析来弥合这一差距。该研究提出了一种使用蔗糖/木糖醇溶液对宾莹型樱桃(甜樱桃)进行增甜的方法,以及一种利用不同浓度(119、238和357 ppm)和温度(40、50和60°C)的赤藓红和红栀子的染色技术。鉴于果实表皮的阻力,果皮的有效扩散率低于果肉。温度和浓度协同作用可提高食品基质中的扩散系数和染料渗透率(357 ppm和60°C)。红栀子表现出显著的温度依赖性变化(p = 0.001),而赤藓红染料在温度变化时保持稳定(p > 0.05)。在357 ppm和60°C时,栀子在樱桃果肉和果皮中的有效扩散率分别为3.89E-08和6.61E-09 m/s,与在较低温度和浓度下获得的结果显著不同。结果突出了温度-浓度对食品着色过程和保鲜方法的传质计算的影响。