Suppr超能文献

多环芳烃对热催化处理的敏感性因其电离势和疏水性而异的机理含义。

Mechanistic Implications of the Varying Susceptibility of PAHs to Pyro-Catalytic Treatment as a Function of Their Ionization Potential and Hydrophobicity.

作者信息

Denison Sara B, Jin Peixuan, Zygourakis Kyriacos, Senftle Thomas P, Alvarez Pedro J J

出版信息

Environ Sci Technol. 2024 Jul 17. doi: 10.1021/acs.est.4c04811.

Abstract

Transition metal catalysts in soil constituents (e.g., clays) can significantly decrease the pyrolytic treatment temperature and energy requirements for efficient removal of polycyclic aromatic hydrocarbons (PAHs) and, thus, lead to more sustainable remediation of contaminated soils. However, the catalytic mechanism and its rate-limiting steps are not fully understood. Here, we show that PAHs with lower ionization potential (IP) are more easily removed by pyro-catalytic treatment when deposited onto Fe-enriched bentonite (1.8% wt. ion-exchanged content). We used four PAHs with decreasing IP: naphthalene > pyrene > benz(a)anthracene > benzo(g,h,i)perylene. Density functional theory (DFT) calculations showed that lower IP results in stronger PAH adsorption to Fe(III) sites and easier transfer of π-bond electrons from the aromatic ring to Fe(III) at the onset of pyrolysis. We postulate that the formation of aromatic radicals via this direct electron transfer (DET) mechanism is the initiation step of a cascade of aromatic polymerization reactions that eventually convert PAHs to a non-toxic and fertility-preserving char, as we demonstrated earlier. However, IP is inversely correlated with PAH hydrophobicity (log ), which may limit access to the Fe(III) catalytic sites (and thus DET) if it increases PAH sorption to soil OM. Thus, ensuring adequate contact between sorbed PAHs and the catalytic reaction centers represents an engineering challenge to achieve faster remediation with a lower carbon footprint via pyro-catalytic treatment.

摘要

土壤成分(如粘土)中的过渡金属催化剂可显著降低热解处理温度以及高效去除多环芳烃(PAHs)所需的能量,从而实现对污染土壤更可持续的修复。然而,其催化机制及其限速步骤尚未完全明确。在此,我们表明,当沉积在富铁膨润土(离子交换含量为1.8%重量)上时,电离势(IP)较低的PAHs更易于通过热催化处理去除。我们使用了四种IP逐渐降低的PAHs:萘>芘>苯并(a)蒽>苯并(g,h,i)苝。密度泛函理论(DFT)计算表明,较低的IP会导致PAHs对Fe(III)位点的吸附更强,并且在热解开始时π键电子从芳环向Fe(III)的转移更容易。我们推测,通过这种直接电子转移(DET)机制形成芳香族自由基是一系列芳香族聚合反应的起始步骤,最终将PAHs转化为无毒且能保持土壤肥力的炭,正如我们之前所证明的那样。然而,IP与PAH疏水性(log )呈负相关,如果它增加了PAHs对土壤有机质的吸附,可能会限制其与Fe(III)催化位点(进而限制DET)的接触。因此,确保吸附的PAHs与催化反应中心之间有足够的接触,是通过热催化处理实现更快修复且降低碳足迹所面临的一项工程挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验