Suppr超能文献

空气稳定的晶圆级铁磁金属碳氮化物单层

Air-Stable Wafer-Scale Ferromagnetic Metallo-Carbon Nitride Monolayer.

作者信息

Lyu Pin, Wang Ziying, Guo Na, Su Jie, Li Jing, Qi Dongchen, Xi Shibo, Lin Huihui, Zhang Qihan, Pennycook Stephen J, Chen Jingsheng, Zhao Xiaoxu, Zhang Chun, Loh Kian Ping, Lu Jiong

机构信息

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

出版信息

J Am Chem Soc. 2024 Jul 31;146(30):20604-20614. doi: 10.1021/jacs.4c02160. Epub 2024 Jul 17.

Abstract

The pursuit of robust, long-range magnetic ordering in two-dimensional (2D) materials holds immense promise for driving technological advances. However, achieving this goal remains a grand challenge due to enhanced quantum and thermal fluctuations as well as chemical instability in the 2D limit. While magnetic ordering has been realized in atomically thin flakes of transition metal chalcogenides and metal halides, these materials often suffer from air instability. In contrast, 2D carbon-based materials are stable enough, yet the challenge lies in creating a high density of local magnetic moments and controlling their long-range magnetic ordering. Here, we report a novel wafer-scale synthesis of an air-stable metallo-carbon nitride monolayer (MCN, denoted as MN/CN), featuring ultradense single magnetic atoms and exhibiting robust room-temperature ferromagnetism. Under low-pressure chemical vapor deposition conditions, thermal dehydrogenation and polymerization of metal phthalocyanine (MPc) on copper foil at elevated temperature generate a substantial number of nitrogen coordination sites for anchoring magnetic single atoms in monolayer MN/CN (where M = Fe, Co, and Ni). The incorporation of densely populating MN sites into monolayer MCN networks leads to robust ferromagnetism up to room temperature, enabling the observation of anomalous Hall effects with excellent chemical stability. Detailed electronic structure calculations indicate that the presence of high-density metal sites results in the emergence of spin-split d-bands near the Fermi level, causing a favorable long-range ferromagnetic exchange coupling through direct exchange interactions. Our work demonstrates a novel synthesis approach for wafer-scale MCN monolayers with robust room-temperature ferromagnetism and may shed light on practical electronic and spintronic applications.

摘要

在二维(2D)材料中实现强大的长程磁有序对推动技术进步具有巨大潜力。然而,由于二维极限下量子和热涨落增强以及化学不稳定性,实现这一目标仍然是一个巨大挑战。虽然在过渡金属硫族化物和金属卤化物的原子级薄片中已实现磁有序,但这些材料通常存在空气不稳定性。相比之下,二维碳基材料足够稳定,然而挑战在于创造高密度的局部磁矩并控制其长程磁有序。在此,我们报告了一种新型的空气稳定金属碳氮化物单层(MCN,记为MN/CN)的晶圆级合成方法,其具有超密集的单个磁性原子并表现出强大的室温铁磁性。在低压化学气相沉积条件下,金属酞菁(MPc)在铜箔上于高温下进行热脱氢和聚合反应,产生大量氮配位位点,用于在单层MN/CN中锚定磁性单原子(其中M = Fe、Co和Ni)。将密集分布的MN位点掺入单层MCN网络中会导致高达室温的强大铁磁性,从而能够观察到具有优异化学稳定性的反常霍尔效应。详细的电子结构计算表明,高密度金属位点的存在导致在费米能级附近出现自旋分裂的d带,通过直接交换相互作用产生有利的长程铁磁交换耦合。我们的工作展示了一种用于晶圆级MCN单层且具有强大室温铁磁性的新型合成方法,并可能为实际的电子和自旋电子应用提供启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验