Suppr超能文献

利用印度尼西亚空棕榈果串:通过温度依赖性热解合成生物炭

Utilizing Indonesian Empty Palm Fruit Bunches: Biochar Synthesis via Temperatures Dependent Pyrolysis.

作者信息

Nugroho Fairuz Gianirfan, Ansari Abu Saad, Rochman Nurul Taufiqu, Khadtare Shubhangi Satish, Sree Vijaya Gopalan, Shrestha Nabeen K, Hafiyyan Afina Faza, Im Hyunsik, Ahmed Abu Talha Aqueel

机构信息

Center of Excellence Applied Nanotechnology, Nano Center Indonesia, Puspiptek, South Tangerang 15314, Banten, Indonesia.

Research Center for Advanced Material, National Research and Innovation Agency (BRIN), Puspiptek, South Tangerang 15314, Banten, Indonesia.

出版信息

Nanomaterials (Basel). 2024 Dec 31;15(1):50. doi: 10.3390/nano15010050.

Abstract

Biomass, though a major energy source, remains underutilized. Biochar from biomass pyrolysis, with its high porosity and surface area, is especially useful as catalyst support, enhancing catalytic activity and reducing electron recombination in photocatalysis. Indonesia, the world's top palm oil producer, generated around 12 million tons of empty fruit bunches (EFBs) in 2023, making EFBs a promising biochar source. This study synthesizes biochar from leftover EFB fibers at 500, 800, and 1000 °C, analyzing structural changes via infrared and Raman spectroscopy, along with particle size and surface area analysis, laying the groundwork for future biochar research. The smallest particle size and highest surface area gained was 71.1 nm and 10.6 × 10 m/g. Spectroscopic analysis indicates that biochar produced at 1000 °C has produced nano-crystalline graphite with a crystallite size of approximately 5.47 nm. This provides higher defect density, although with lower conductivity. Other studies indicate that our biochar can be used as catalyst support for various green energy-related applications, i.e., counter electrodes, electrocatalysts, and photocatalysts.

摘要

生物质虽然是一种主要能源,但仍未得到充分利用。生物质热解产生的生物炭具有高孔隙率和高表面积,特别适用于作为催化剂载体,可提高光催化中的催化活性并减少电子复合。印度尼西亚是世界上最大的棕榈油生产国,2023年产生了约1200万吨空果串,这使得空果串成为一种有前景的生物炭来源。本研究在500、800和1000°C下由剩余的空果串纤维合成生物炭,通过红外光谱和拉曼光谱分析结构变化,并进行粒度和表面积分析,为未来的生物炭研究奠定基础。获得的最小粒径和最大表面积分别为71.1 nm和10.6×10 m/g。光谱分析表明,在1000°C下产生的生物炭生成了微晶尺寸约为5.47 nm的纳米晶石墨。这提供了更高的缺陷密度,尽管导电性较低。其他研究表明,我们的生物炭可作为各种绿色能源相关应用的催化剂载体,即对电极、电催化剂和光催化剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc64/11723393/11bd984f0a74/nanomaterials-15-00050-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验