Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy.
AIG, Associazione Italiana Glicogenosi, ONLUS, Via Roma, 2/G 20090 Assago, Milan, Italy.
Protein Pept Lett. 2024;31(7):519-531. doi: 10.2174/0109298665307430240628063339.
Glycogen Storage Disease type III (GSD III) is a metabolic disorder resulting from a deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (approximately 170 kDa) with cytoplasmic localization and two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Mutations in the Agl gene, with consequent deficiency in GDE, lead to the accumulation of abnormal/toxic glycogen with shorter chains (phosphorylase limit dextrin, PLD) in skeletal and/or heart muscle and/or in the liver. Currently, there is no targeted therapy, and available treatments are symptomatic, relying on specific diets.
Enzyme Replacement Therapy (ERT) might represent a potential therapeutic strategy for GSD III. Moreover, the single-gene nature of GSD III, the subcellular localization of GDE, and the type of affected tissues represent ideal conditions for exploring gene therapy approaches. Toward this direction, we designed a synthetic, codon-optimized cDNA encoding the human GDE.
This gene yielded high amounts of soluble, enzymatically active protein in Escherichia coli. Moreover, when transfected in Human Embryonic Kidney cells (HEK-293), it successfully encoded a functional GDE.
These results suggest that our gene or protein might complement the missing function in GSD III patients, opening the door to further exploration of therapeutic approaches for this disease.
糖原贮积病 III 型(GSD III)是一种代谢紊乱,由糖原分支酶(GDE)缺乏引起,GDE 是一种大型单体蛋白(约 170 kDa),具有细胞质定位和两种不同的酶活性:4-α-葡聚糖转移酶和淀粉α-1,6-葡萄糖苷酶。Agl 基因突变,导致 GDE 缺乏,导致骨骼肌和/或心肌和/或肝脏中异常/毒性糖原的积累,其短链(磷酸化酶极限糊精,PLD)增加。目前尚无靶向治疗方法,可用的治疗方法是对症治疗,依赖于特定的饮食。
酶替代疗法(ERT)可能是 GSD III 的一种潜在治疗策略。此外,GSD III 的单基因性质、GDE 的亚细胞定位以及受影响组织的类型代表了探索基因治疗方法的理想条件。为此,我们设计了一种编码人 GDE 的合成、密码子优化 cDNA。
该基因在大肠杆菌中产生大量可溶性、具有酶活性的蛋白。此外,当转染人胚肾细胞(HEK-293)时,它成功地编码了一种功能性 GDE。
这些结果表明,我们的基因或蛋白可能弥补 GSD III 患者缺失的功能,为该疾病的治疗方法进一步探索打开了大门。