Suppr超能文献

在安培级电流密度下对超高效双功能海水分解的互补多位点周转催化。

Complementary Multisite Turnover Catalysis toward Superefficient Bifunctional Seawater Splitting at Ampere-Level Current Density.

作者信息

Liao Liling, Li Dongyang, Zhang Yan, Zhang Yong, Yu Fang, Yang Lun, Wang Xiuzhang, Tang Dongsheng, Zhou Haiqing

机构信息

Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China.

Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, P. R. China.

出版信息

Adv Mater. 2024 Sep;36(36):e2405852. doi: 10.1002/adma.202405852. Epub 2024 Jul 17.

Abstract

The utilization of seawater for hydrogen production via water splitting is increasingly recognized as a promising avenue for the future. The key dilemma for seawater electrolysis is the incompatibility of superior hydrogen- and oxygen-evolving activities at ampere-scale current densities for both cathodic and anodic catalysts, thus leading to large electric power consumption of overall seawater splitting. Here, in situ construction of FeN/CoN/MoO heterostructure arrays anchoring on metallic nickel nitride surface with multilevel collaborative catalytic interfaces and abundant multifunctional metal sites is reported, which serves as a robust bifunctional catalyst for alkaline freshwater/seawater splitting at ampere-level current density. Operando Raman and X-ray photoelectron spectroscopic studies combined with density functional theory calculations corroborate that Mo and Co/Fe sites situated on the FeN/CoN/MoO multilevel interfaces optimize the reaction pathway and coordination environment to enhance water adsorption/dissociation, hydrogen adsorption, and oxygen-containing intermediate adsorption, thus cooperatively expediting hydrogen/oxygen evolution reactions in base. Inspiringly, this electrocatalyst can substantially ameliorate overall freshwater/seawater splitting at 1000 mA cm with low cell voltages of 1.65/1.69 V, along with superb long-term stability at 500-1500 mA cm for over 200 h, outperforming nearly all the ever-reported non-noble electrocatalysts for freshwater/seawater electrolysis. This work offers a viable approach to design high-performance bifunctional catalysts for seawater splitting.

摘要

通过水分解利用海水制氢日益被认为是未来一条有前景的途径。海水电解的关键难题在于,在安培级电流密度下,阴极和阳极催化剂的析氢和析氧活性不相容,从而导致整个海水分解过程的电力消耗巨大。在此,报道了一种原位构建在金属氮化镍表面的FeN/CoN/MoO异质结构阵列,其具有多级协同催化界面和丰富的多功能金属位点,可作为一种强大的双功能催化剂,用于在安培级电流密度下进行碱性淡水/海水分解。原位拉曼光谱和X射线光电子能谱研究结合密度泛函理论计算证实,位于FeN/CoN/MoO多级界面上的Mo和Co/Fe位点优化了反应路径和配位环境,以增强水的吸附/解离、氢吸附和含氧中间体吸附,从而协同加速碱性条件下的析氢/析氧反应。令人鼓舞的是,这种电催化剂能够在1000 mA cm²的电流密度下,以1.65/1.69 V的低电池电压显著改善整个淡水/海水分解过程,同时在500 - 1500 mA cm²的电流密度下具有超过200小时的出色长期稳定性,性能优于几乎所有已报道的用于淡水/海水电解的非贵金属电催化剂。这项工作为设计用于海水分解的高性能双功能催化剂提供了一种可行的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验