使用质谱流式细胞术进行自动细胞类型注释和单细胞信号动力学探索。
Automated cell type annotation and exploration of single-cell signaling dynamics using mass cytometry.
作者信息
Kleftogiannis Dimitrios, Gavasso Sonia, Tislevoll Benedicte Sjo, van der Meer Nisha, Motzfeldt Inga K F, Hellesøy Monica, Gullaksen Stein-Erik, Griessinger Emmanuel, Fagerholt Oda, Lenartova Andrea, Fløisand Yngvar, Schuringa Jan Jacob, Gjertsen Bjørn Tore, Jonassen Inge
机构信息
Department of Informatics, Computational Biology Unit, University of Bergen, 5020 Bergen, Norway.
Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
出版信息
iScience. 2024 Jun 12;27(7):110261. doi: 10.1016/j.isci.2024.110261. eCollection 2024 Jul 19.
Mass cytometry by time-of-flight (CyTOF) is an emerging technology allowing for in-depth characterization of cellular heterogeneity in cancer and other diseases. Unfortunately, high-dimensional analyses of CyTOF data remain quite demanding. Here, we deploy a bioinformatics framework that tackles two fundamental problems in CyTOF analyses namely (1) automated annotation of cell populations guided by a reference dataset and (2) systematic utilization of single-cell data for effective patient stratification. By applying this framework on several publicly available datasets, we demonstrate that the Scaffold approach achieves good trade-off between sensitivity and specificity for automated cell type annotation. Additionally, a case study focusing on a cohort of 43 leukemia patients reported salient interactions between signaling proteins that are sufficient to predict short-term survival at time of diagnosis using the XGBoost algorithm. Our work introduces an automated and versatile analysis framework for CyTOF data with many applications in future precision medicine projects.
飞行时间质谱流式细胞术(CyTOF)是一项新兴技术,可对癌症和其他疾病中的细胞异质性进行深入表征。不幸的是,对CyTOF数据进行高维分析仍然颇具挑战性。在此,我们部署了一个生物信息学框架,该框架解决了CyTOF分析中的两个基本问题,即(1)在参考数据集的指导下对细胞群体进行自动注释,以及(2)系统利用单细胞数据进行有效的患者分层。通过将此框架应用于几个公开可用的数据集,我们证明了支架方法在自动细胞类型注释的敏感性和特异性之间实现了良好的平衡。此外,一项针对43名白血病患者队列的案例研究报告了信号蛋白之间的显著相互作用,这些相互作用足以使用XGBoost算法预测诊断时的短期生存情况。我们的工作为CyTOF数据引入了一个自动化且通用的分析框架,在未来的精准医学项目中有诸多应用。
相似文献
Bioinformatics. 2021-11-18
Bioinformatics. 2017-11-1
Cytometry A. 2019-3-12
Curr Protoc. 2021-4
Bioinformatics. 2019-10-15
Clin Transl Med. 2020-10
Am J Physiol Heart Circ Physiol. 2022-7-1
本文引用的文献
Genome Biol. 2024-4-8
Cell Rep Methods. 2023-8-28
Nat Cancer. 2021-3