Suppr超能文献

综合运用遥感、机器学习和物理化学参数来检测非补给性含水层系统中的水动力条件和地下水质量恶化的方法。

Comprehensive approach integrating remote sensing, machine learning, and physicochemical parameters to detect hydrodynamic conditions and groundwater quality deterioration in non-rechargeable aquifer systems.

作者信息

Eid Mohamed Hamdy, Shebl Ali, Eissa Mustafa, Mohamed Essam A, Fahil Amr S, Ramadan Hatem Saad, Abukhadra Mostafa R, El-Sherbeeny Ahmed M, Kovacs Attila, Szűcs Péter

机构信息

Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, 3515, Miskolc, Egyetemváros, Hungary.

Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt.

出版信息

Heliyon. 2024 Jun 15;10(12):e32992. doi: 10.1016/j.heliyon.2024.e32992. eCollection 2024 Jun 30.

Abstract

The current study integrates remote sensing, machine learning, and physicochemical parameters to detect hydrodynamic conditions and groundwater quality deterioration in non-rechargeable aquifer systems. Fifty-two water samples were collected from all water resources in Siwa Oasis and analyzed for physical (pH, T°C, EC, and TDS) chemical (SO , HCO , NO , Cl, CO , SiO, Mg, Na, Ca, and K), and trace metals (AL, Fe, Sr, Ba, B, and Mn). A digital elevation model supported by machine learning was used to predict the change in the land cover (surface lake area, soil salinity, and water logging) and its effect on water quality deterioration. The groundwater circulation and interaction between the deep aquifer (NSSA) and shallow aquifer (TCA) were detected from the pressure-depth profile of 27 production wells penetrating NSSA. The chemical facies evolution in the aquifer systems were (Ca-Mg-HCO) in the first stage (freshwater of NSSA) and changed to (Na-Cl) type in the last stage (brackish water of TCA and springs). Support vector machine successfully predicted the rapid increase of the hypersaline lake area from 22.6 km to 60.6 km within 30 years, which deteriorated a large part of the cultivated land, reflecting the environmental risk of over-extraction of water for irrigation of agricultural land by flooding technique and lack of suitable drainage network. The waterlogging in the study was due to a reduction in the infiltration rate (low permeability) of the soil and quaternary aquifer. The cause of this issue could be a complete saturation of agricultural water with chrysotile, calcite, talc, dolomite, gibbsite, chlorite, Ca-montmorillonite, illite, hematite, kaolinite and K-mica (saturation index >1), giving the chance of these minerals to precipitate in the pore spaces of the soil and decrease the infiltration rate. The NSSA is appropriate for irrigation, whereas TCA is inappropriate due to potential salinity and magnesium risks. The best way to manage water resources in Siwa Oasis could be to use underground drip irrigation and combine water with TCA and NSSA.

摘要

本研究整合了遥感、机器学习和物理化学参数,以检测不可补给含水层系统中的水动力条件和地下水质量恶化情况。从锡瓦绿洲的所有水资源中采集了52个水样,并对其进行了物理(pH值、温度、电导率和总溶解固体)、化学(硫酸根、碳酸氢根、硝酸根、氯离子、碳酸根、硅酸根、镁、钠、钙和钾)以及痕量金属(铝、铁、锶、钡、硼和锰)分析。利用机器学习支持的数字高程模型来预测土地覆盖变化(地表湖泊面积、土壤盐度和涝渍情况)及其对水质恶化的影响。通过对27口穿透努比亚砂岩含水层(NSSA)的生产井的压力-深度剖面进行分析,检测了深层含水层(NSSA)和浅层含水层(TCA)之间的地下水循环和相互作用。含水层系统中的化学相演化在第一阶段为(钙-镁-碳酸氢根)型(NSSA的淡水),在最后阶段变为(钠-氯)型(TCA和泉水的微咸水)。支持向量机成功预测了高盐湖泊面积在30年内从22.6平方千米迅速增加到60.6平方千米,这使很大一部分耕地退化,反映了采用漫灌技术过度抽取农业灌溉用水且缺乏合适排水网络所带来的环境风险。研究中的涝渍是由于土壤和第四纪含水层的渗透率降低(低渗透性)所致。这个问题的原因可能是农业用水中温石棉、方解石、滑石、白云石、三水铝石、绿泥石、钙蒙脱石、伊利石、赤铁矿、高岭石和钾云母完全饱和(饱和指数>1),使得这些矿物有机会在土壤孔隙空间中沉淀并降低渗透率。NSSA适合灌溉,而TCA由于潜在的盐度和镁风险则不适合。管理锡瓦绿洲水资源的最佳方法可能是采用地下滴灌,并将TCA和NSSA的水混合使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e411/11252974/74ee36ea85fa/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验