Simões Mónica Gaspar, Unger Katrin, Czibula Caterina, Coclite Anna Maria, Schennach Robert, Hirn Ulrich
AlmaScience Association - Pulp Research and Development for Smart and Sustainable Applications Madan Parque, Rua dos Inventores, 2825-182, Caparica, Portugal.
Silicon Austria Laboratories GmbH, Sandgasse 34, 8010 Graz, Austria.
ACS Appl Nano Mater. 2024 Jun 28;7(13):15693-15701. doi: 10.1021/acsanm.4c01809. eCollection 2024 Jul 12.
Adhesion between solid materials is caused by intermolecular forces that only take place if the adhering surfaces are at nanoscale contact (NSC) (i.e., 0.1-0.4 nm. To study adhesion, NSC can be evaluated with Förster Resonance Energy Transfer (FRET). FRET uses the interaction of compatible fluorescence molecules to measure the nanometer distance between bonded surfaces. For this, each surface is labeled with one fluorescence dye, named the Donor or Acceptor. If these molecules are in NSC, a nonradiative Donor-Acceptor energy transfer will occur and can be detected using FRET spectroscopy. Here, for the first time, we introduce an innovative concept of a FRET-based NSC measurement employing dye-nanolayer films prepared by a physical vapor deposition (PVD). The dye nanolayers were prepared by PVD from the vaporization of the Donor and Acceptor molecules separately. The selected molecules, 7-Amino-4-methyl-cumarin (C120) and 5(6)-Carboxy-2',7'-dichlor-fluorescein (CDCF), present high quantum yields (QY, QY = 0.91 and QY = 0.64) and a low FRET distance range of 0.6-2.2 nm, adequate for the study of NSC. The produced dye-nanolayer films exhibit a uniform dye distribution (verified by atomic force microscopy) and suitable fluorescence intensities. To validate the NSC measurements, FRET spectroscopy experiments were performed with bonded dye-nanolayer films prepared under different loads (from 1.5 to 140 bar), thus creating different degrees of NSC. The results show an increase in FRET intensity ( = 0.95) with the respective adhesion energy between the films, which is directly related to the degree of NSC. Hence, this work establishes FRET as an experimental technique for the measurement of NSC, and its relation to surface adhesion. Additionally, thanks to the FRET dye-nanolayer approach, the method can be employed on arbitrary surfaces. Essentially, any sufficiently transparent substrate can be functionalized with FRET compatible dyes to evaluate NSC, which represents a breakthrough in contact mechanics investigations of soft and hard solid materials.
固体材料之间的粘附是由分子间力引起的,只有当粘附表面处于纳米级接触(NSC)(即0.1 - 0.4纳米)时才会发生。为了研究粘附,可通过Förster共振能量转移(FRET)来评估NSC。FRET利用兼容荧光分子的相互作用来测量结合表面之间的纳米距离。为此,每个表面都用一种荧光染料标记,称为供体或受体。如果这些分子处于NSC中,将发生非辐射性供体 - 受体能量转移,并且可以使用FRET光谱法进行检测。在此,我们首次引入了一种基于FRET的NSC测量的创新概念,该概念采用通过物理气相沉积(PVD)制备的染料 - 纳米层薄膜。染料纳米层是通过PVD分别从供体和受体分子的汽化制备而成。所选分子7 - 氨基 - 4 - 甲基 - 香豆素(C120)和5(6) - 羧基 - 2',7' - 二氯 - 荧光素(CDCF)具有高量子产率(QY,QY = 0.91和QY = 0.64)以及0.6 - 2.2纳米的低FRET距离范围,适用于NSC研究。所制备的染料 - 纳米层薄膜表现出均匀的染料分布(通过原子力显微镜验证)和合适的荧光强度。为了验证NSC测量,对在不同负载(从1.5到140巴)下制备的结合染料 - 纳米层薄膜进行了FRET光谱实验,从而产生不同程度的NSC。结果表明,FRET强度(= 0.95)随着薄膜之间各自的粘附能增加,这与NSC程度直接相关。因此,这项工作确立了FRET作为测量NSC及其与表面粘附关系的实验技术。此外,由于采用了FRET染料 - 纳米层方法,该方法可应用于任意表面。本质上,任何足够透明的基材都可以用与FRET兼容的染料进行功能化,以评估NSC,这代表了软、硬固体材料接触力学研究的一项突破。