Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 35005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou 35005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 35005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou 35005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
Acta Biomater. 2024 Sep 1;185:361-370. doi: 10.1016/j.actbio.2024.07.017. Epub 2024 Jul 23.
The effectiveness of tumor treatment using reactive oxygen species as the primary therapeutic medium is hindered by limitations of tumor microenvironment (TME), such as intrinsic hypoxia in photodynamic therapy (PDT) and overproduction of reducing glutathione (GSH) in chemodynamic therapy (CDT). Herein, we fabricate metal-polyphenol self-assembled nanodots (Fe@BDP NDs) guided by second near-infrared (NIR-II) fluorescence imaging. The Fe@BDP NDs are designed for synergistic combination of type-I PDT and CDT-amplified ferroptosis. In a mildly acidic TME, Fe@BDP NDs demonstrate great Fenton activity, leading to the generation of highly toxic hydroxyl radicals from overproduced hydrogen peroxide in tumor cells. Furthermore, Fe@BDP NDs show favorable efficacy in type-I PDT, even in tolerating tumor hypoxia, generating active superoxide anion upon exposure to 808 nm laser irradiation. The significant efficiency in reactive oxygen species (ROS) products results in the oxidation of sensitive polyunsaturated fatty acids, accelerating lethal lipid peroxidation (LPO) bioprocess. Additionally, Fe@BDP NDs illustrate an outstanding capability for GSH depletion, causing the inactivation of glutathione peroxidase 4 and further promoting lethal LPO. The synergistic type-I photodynamic and chemodynamic cytotoxicity effectively trigger irreversible ferroptosis by disrupting the intracellular redox homeostasis. Moreover, Fe@BDP NDs demonstrate charming NIR-II fluorescence imaging capability and effectively accumulated at the tumor site, visualizing the distribution of Fe@BDP NDs and the treatment process. The chemo/photo-dynamic-amplified ferroptotic efficacy of Fe@BDP NDs was evidenced both in vitro and in vivo. This study presents a compelling approach to intensify ferroptosis via visualized CDT and PDT. STATEMENT OF SIGNIFICANCE: In this study, we detailed the fabrication of metal-polyphenol self-assembled nanodots (Fe@BDP NDs) guided by second near-infrared (NIR-II) fluorescence imaging, aiming to intensify ferroptosis via the synergistic combination of type-I PDT and CDT. In a mildly acidic TME, Fe@BDP NDs exhibited significant Fenton activity, resulting in the generation of highly toxic •OH from overproduced HO in tumor cells. Fe@BDP NDs possessed a remarkable capability for GSH depletion, resulting in the inactivation of glutathione peroxidase 4 (GPX4) and further accelerating lethal LPO. This study presented a compelling approach to intensify ferroptosis via visualized CDT and PDT.
利用活性氧作为主要治疗介质的肿瘤治疗效果受到肿瘤微环境(TME)的限制,例如光动力疗法(PDT)中的固有缺氧和化学动力学疗法(CDT)中谷胱甘肽(GSH)的过度产生。在此,我们通过第二近红外(NIR-II)荧光成像指导构建金属-多酚自组装纳米点(Fe@BDP NDs)。Fe@BDP NDs 旨在协同结合 I 型 PDT 和 CDT 放大的铁死亡。在轻度酸性的 TME 中,Fe@BDP NDs 表现出很强的 Fenton 活性,导致肿瘤细胞中过量产生的过氧化氢生成高毒性的羟基自由基。此外,Fe@BDP NDs 在 I 型 PDT 中表现出良好的疗效,即使在耐受肿瘤缺氧的情况下,在暴露于 808nm 激光照射时也会产生活性超氧阴离子。活性氧(ROS)产物的显著效率导致敏感多不饱和脂肪酸的氧化,加速致命的脂质过氧化(LPO)生物过程。此外,Fe@BDP NDs 表现出出色的 GSH 耗竭能力,导致谷胱甘肽过氧化物酶 4 失活,并进一步促进致命的 LPO。协同的 I 型光动力和化学动力学细胞毒性通过破坏细胞内氧化还原稳态,有效引发不可逆的铁死亡。此外,Fe@BDP NDs 表现出迷人的 NIR-II 荧光成像能力,并有效地在肿瘤部位积聚,可视化 Fe@BDP NDs 的分布和治疗过程。Fe@BDP NDs 的化学/光动力学增强的铁死亡疗效在体外和体内均得到证实。本研究提供了一种通过可视化 CDT 和 PDT 来增强铁死亡的有力方法。
声明:在本研究中,我们详细介绍了金属-多酚自组装纳米点(Fe@BDP NDs)的构建,该纳米点由第二近红外(NIR-II)荧光成像引导,旨在通过 I 型 PDT 和 CDT 的协同组合来增强铁死亡。在轻度酸性的 TME 中,Fe@BDP NDs 表现出显著的 Fenton 活性,导致肿瘤细胞中过量产生的 H2O2 生成高毒性的•OH。Fe@BDP NDs 具有显著的 GSH 耗竭能力,导致谷胱甘肽过氧化物酶 4(GPX4)失活,并进一步加速致命的 LPO。本研究提供了一种通过可视化 CDT 和 PDT 来增强铁死亡的有力方法。
ACS Appl Mater Interfaces. 2022-2-2
ACS Appl Mater Interfaces. 2021-6-23
ACS Appl Mater Interfaces. 2025-1-29