文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过 Ru-Cu 过氧化物纳米载体工程化 HO 自供给平台:肿瘤微环境介导的协同治疗。

Engineering HO Self-Supplying Platform for Xdynamic Therapies via Ru-Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy.

机构信息

Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China.

Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2024 May 15;16(19):24172-24190. doi: 10.1021/acsami.3c18888. Epub 2024 Apr 30.


DOI:10.1021/acsami.3c18888
PMID:38688027
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11103653/
Abstract

Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient HO concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous HO levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design RuCuO-Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru-Cu peroxide nanodots (RuCuO NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru-Cu peroxide NDs (RCp NDs, = 0.50) possess the highest oxygen vacancy (O) density, which grants them the potential to form massive Lewis's acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing HO, Ru, and Cu ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (O) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.

摘要

在最常见的情况下,肿瘤微环境 (TME) 中的缺氧、过度表达的谷胱甘肽 (GSH) 和不足的 HO 浓度是限制活性氧 (ROS) 介导的 Xdynamic 治疗 (X = 光、化学动力学、化疗) 进展的主要障碍。在化学动力学治疗 (CDT) 中,最大限度地提高芬顿催化效率至关重要,但内源性 HO 水平不足以达到更好的抗癌疗效。具体来说,需要在肿瘤内放大芬顿反应性,利用 TME 的独特属性。在这里,我们首次设计了基于异质 Ru-Cu 过氧化物纳米点 (RuCuO NDs) 和氯 e6 (Ce6) 的 RuCuO-Ce6/CPT (RCpCCPT) 抗癌纳米制剂,用于 TME 介导的协同治疗,负载 ROS 响应硫缩酮 (TK) 连接的喜树碱 (CPT)。Ru-Cu 过氧化物 NDs (RCp NDs, = 0.50) 具有最高的氧空位 (O) 密度,这使它们有可能形成大量路易斯酸位来吸附过氧化物,而 NDs 的分散性和靶向性则通过使用透明质酸 (HA) 进行表面改性得到提高。在 TME 中,RCpCCPT 降解,释放 HO、Ru 和 Cu 离子,这些离子通过共催化循环协同促进羟基自由基 (•OH) 的形成并使抗氧化剂 GSH 酶失活,从而产生优异的肿瘤治疗效果。此外,当与激光治疗结合使用时,RCpCCPT 会产生用于 PDT 的单线态氧 (O),从而在肿瘤部位诱导细胞凋亡。ROS 产生后,TK 键断裂,48 小时内释放高达 92%的 CPT。体外研究表明,激光处理的 RCPCCPT 导致 PDT/CDT 和化疗 (CT) 引起的 81.5%的细胞死亡。癌细胞中的 RCP 纳米颗粒在细胞摄取时产生红蓝发射,这使得可以进行荧光图像引导的 Xdynamic 治疗。总体结果表明,RCp 纳米颗粒和 RCPCCPT 在体外和体内具有更好的生物相容性和优异的 Xdynamic 治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/0028b5c48037/am3c18888_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/30a44fc861c8/am3c18888_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/29fba54142cf/am3c18888_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/9ecf4e1faba6/am3c18888_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/eb0598c1cc4e/am3c18888_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/0cdb5fede2ee/am3c18888_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/c1532ad39b0d/am3c18888_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/74cb34d361ad/am3c18888_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/87897752cc6d/am3c18888_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/8437570d21d6/am3c18888_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/0028b5c48037/am3c18888_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/30a44fc861c8/am3c18888_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/29fba54142cf/am3c18888_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/9ecf4e1faba6/am3c18888_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/eb0598c1cc4e/am3c18888_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/0cdb5fede2ee/am3c18888_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/c1532ad39b0d/am3c18888_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/74cb34d361ad/am3c18888_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/87897752cc6d/am3c18888_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/8437570d21d6/am3c18888_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cf/11103653/0028b5c48037/am3c18888_0009.jpg

相似文献

[1]
Engineering HO Self-Supplying Platform for Xdynamic Therapies via Ru-Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy.

ACS Appl Mater Interfaces. 2024-5-15

[2]
Metal-polyphenol self-assembled nanodots for NIR-II fluorescence imaging-guided chemodynamic/photodynamic therapy-amplified ferroptosis.

Acta Biomater. 2024-9-1

[3]
Preclinical Assessment of Enhanced Chemodynamic Therapy by an FeMnO-Based Nanocarrier: Tumor-Microenvironment-Mediated Fenton Reaction and ROS-Induced Chemotherapeutic for Boosted Antitumor Activity.

ACS Appl Mater Interfaces. 2023-12-6

[4]
A tumor pH-responsive autocatalytic nanoreactor as a HO and O self-supplying depot for enhanced ROS-based chemo/photodynamic therapy.

Acta Biomater. 2022-12

[5]
Molybdenum-oxo-sulfide quantum dot-based nanocarrier: Efficient generation of reactive oxygen species via photo/chemodynamic therapy and stimulus-induced drug release.

J Colloid Interface Sci. 2023-10

[6]
A ROS storm generating nanocomposite for enhanced chemodynamic therapy through HO self-supply, GSH depletion and calcium overload.

Nanoscale. 2024-5-2

[7]
Zinc peroxide-based nanotheranostic platform with endogenous hydrogen peroxide/oxygen generation for enhanced photodynamic-chemo therapy of tumors.

J Colloid Interface Sci. 2024-8-15

[8]
Tumor microenvironment activated mussel-inspired hollow mesoporous nanotheranostic for enhanced synergistic photodynamic/chemodynamic therapy.

J Colloid Interface Sci. 2024-7

[9]
Enzyme-like copper-encapsulating magnetic nanoassemblies for switchable T1-weighted MRI and potentiating chemo-/photo-dynamic therapy.

Acta Biomater. 2022-11

[10]
Manganese-Based Nanoplatform As Metal Ion-Enhanced ROS Generator for Combined Chemodynamic/Photodynamic Therapy.

ACS Appl Mater Interfaces. 2019-10-23

引用本文的文献

[1]
Self-Assembled Nanoplatform with pH/NIR Light-Responsive Drug Delivery for Combined Therapy of Glioma in vitro.

Int J Nanomedicine. 2025-7-15

[2]
Tumor Microenvironment-responsive Nanocatalyst for Targeted Chemodynamic Cancer Therapy.

Adv Healthc Mater. 2025-8

[3]
Metal Peroxide Nanoparticles for Modulating the Tumor Microenvironment: Current Status and Recent Prospects.

Cancers (Basel). 2024-10-24

[4]
Modulating dual carrier-transfer channels and band structure in carbon nitride to amplify ROS storm for enhanced cancer photodynamic therapy.

Mater Today Bio. 2024-10-4

本文引用的文献

[1]
Preclinical Assessment of Enhanced Chemodynamic Therapy by an FeMnO-Based Nanocarrier: Tumor-Microenvironment-Mediated Fenton Reaction and ROS-Induced Chemotherapeutic for Boosted Antitumor Activity.

ACS Appl Mater Interfaces. 2023-12-6

[2]
Peroxide-Simulating and GSH-Depleting Nanozyme for Enhanced Chemodynamic/Photodynamic Therapy via Induction of Multisource ROS.

ACS Appl Mater Interfaces. 2023-10-18

[3]
HO Self-Supply and Glutathione Depletion Engineering Nanoassemblies for NIR-II Photoacoustic Imaging of Tumor Tissues and Photothermal-Enhanced Gas Starvation-Primed Chemodynamic Therapy.

ACS Appl Mater Interfaces. 2023-8-16

[4]
Radially Electrospun Fibrous Membrane Incorporated with Copper Peroxide Nanodots Capable of Self-Catalyzed Chemodynamic Therapy for Angiogenesis and Healing Acceleration of Diabetic Wounds.

ACS Appl Mater Interfaces. 2023-8-2

[5]
Molybdenum-oxo-sulfide quantum dot-based nanocarrier: Efficient generation of reactive oxygen species via photo/chemodynamic therapy and stimulus-induced drug release.

J Colloid Interface Sci. 2023-10

[6]
Biomimetic Nanoparticle with Glutathione Depletion and Amplified ROS Generation Capabilities for Synergistic Chemo-Sonodynamic Therapy in Squamous Cell Carcinomas.

ACS Appl Mater Interfaces. 2023-6-7

[7]
In Situ Fabrication of Silver Peroxide Hybrid Ultrathin Co-Based Metal-Organic Frameworks for Enhanced Chemodynamic Antibacterial Therapy.

ACS Appl Mater Interfaces. 2023-5-17

[8]
Multifunctional manganese oxide-based nanocomposite theranostic agent with glucose/light-responsive singlet oxygen generation and dual-modal imaging for cancer treatment.

J Colloid Interface Sci. 2023-8

[9]
Dual-Targeting and Multimodal Imaging-Guided Photothermal/Chemodynamic Synergistic Therapy Boosted by Ascorbic Acid-Induced HO Self-Supply.

ACS Appl Mater Interfaces. 2023-2-22

[10]
A tumor pH-responsive autocatalytic nanoreactor as a HO and O self-supplying depot for enhanced ROS-based chemo/photodynamic therapy.

Acta Biomater. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索