Liu Yue, Zhou Sihang, Yang Xihong, Liu Xinwang, Tu Wenxuan, Li Liang, Xu Xin, Sun Fuchun
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):6159-6173. doi: 10.1109/TNNLS.2024.3406538. Epub 2025 Apr 4.
Deep graph clustering, which aims to reveal the underlying graph structure and divide the nodes into different clusters without human annotations, is a fundamental yet challenging task. However, we observe that the existing methods suffer from the representation collapse problem and tend to encode samples with different classes into the same latent embedding. Consequently, the discriminative capability of nodes is limited, resulting in suboptimal clustering performance. To address this problem, we propose a novel deep graph clustering algorithm termed improved dual correlation reduction network (IDCRN) through improving the discriminative capability of samples. Specifically, by approximating the cross-view feature correlation matrix to an identity matrix, we reduce the redundancy between different dimensions of features, thus improving the discriminative capability of the latent space explicitly. Meanwhile, the cross-view sample correlation matrix is forced to approximate the designed clustering-refined adjacency matrix to guide the learned latent representation to recover the affinity matrix even across views, thus enhancing the discriminative capability of features implicitly. Moreover, we avoid the collapsed representation caused by the oversmoothing issue in graph convolutional networks (GCNs) through an introduced propagation regularization term, enabling IDCRN to capture the long-range information with the shallow network structure. Extensive experimental results on six benchmarks have demonstrated the effectiveness and efficiency of IDCRN compared with the existing state-of-the-art deep graph clustering algorithms. The code of IDCRN is released at IDCRN. Besides, we share a collection of deep graph clustering, including papers, codes, and datasets at ADGC.
深度图聚类旨在揭示潜在的图结构并将节点划分为不同的簇,无需人工标注,这是一项基础但具有挑战性的任务。然而,我们观察到现有方法存在表示坍缩问题,并且倾向于将不同类别的样本编码到相同的潜在嵌入中。因此,节点的判别能力有限,导致聚类性能次优。为了解决这个问题,我们通过提高样本的判别能力,提出了一种新颖的深度图聚类算法,称为改进的双相关减少网络(IDCRN)。具体来说,通过将跨视图特征相关矩阵近似为单位矩阵,我们减少了特征不同维度之间的冗余,从而明确提高了潜在空间的判别能力。同时,强制跨视图样本相关矩阵近似设计的聚类细化邻接矩阵,以引导学习到的潜在表示即使在跨视图时也能恢复亲和矩阵,从而隐式增强特征的判别能力。此外,我们通过引入的传播正则化项避免了图卷积网络(GCN)中过度平滑问题导致的表示坍缩,使IDCRN能够利用浅层网络结构捕获远程信息。在六个基准上的大量实验结果表明,与现有的深度图聚类算法相比,IDCRN具有有效性和高效性。IDCRN的代码在IDCRN发布。此外,我们在ADGC分享了一个深度图聚类集合,包括论文、代码和数据集。