Suppr超能文献

探索用于高性能RGB-T跟踪的多模态时空上下文

Exploring Multi-Modal Spatial-Temporal Contexts for High-Performance RGB-T Tracking.

作者信息

Zhang Tianlu, Jiao Qiang, Zhang Qiang, Han Jungong

出版信息

IEEE Trans Image Process. 2024;33:4303-4318. doi: 10.1109/TIP.2024.3428316. Epub 2024 Jul 30.

Abstract

In RGB-T tracking, there exist rich spatial relationships between the target and backgrounds within multi-modal data as well as sound consistencies of spatial relationships among successive frames, which are crucial for boosting the tracking performance. However, most existing RGB-T trackers overlook such multi-modal spatial relationships and temporal consistencies within RGB-T videos, hindering them from robust tracking and practical applications in complex scenarios. In this paper, we propose a novel Multi-modal Spatial-Temporal Context (MMSTC) network for RGB-T tracking, which employs a Transformer architecture for the construction of reliable multi-modal spatial context information and the effective propagation of temporal context information. Specifically, a Multi-modal Transformer Encoder (MMTE) is designed to achieve the encoding of reliable multi-modal spatial contexts as well as the fusion of multi-modal features. Furthermore, a Quality-aware Transformer Decoder (QATD) is proposed to effectively propagate the tracking cues from historical frames to the current frame, which facilitates the object searching process. Moreover, the proposed MMSTC network can be easily extended to various tracking frameworks. New state-of-the-art results on five prevalent RGB-T tracking benchmarks demonstrate the superiorities of our proposed trackers over existing ones.

摘要

在RGB-T跟踪中,多模态数据内目标与背景之间存在丰富的空间关系,以及连续帧之间空间关系的一致性,这对于提升跟踪性能至关重要。然而,大多数现有的RGB-T跟踪器忽略了RGB-T视频中的这种多模态空间关系和时间一致性,阻碍了它们在复杂场景中的鲁棒跟踪和实际应用。在本文中,我们提出了一种用于RGB-T跟踪的新型多模态时空上下文(MMSTC)网络,该网络采用Transformer架构来构建可靠的多模态空间上下文信息并有效传播时间上下文信息。具体而言,设计了一种多模态Transformer编码器(MMTE)来实现可靠的多模态空间上下文的编码以及多模态特征的融合。此外,还提出了一种质量感知Transformer解码器(QATD),以有效地将跟踪线索从历史帧传播到当前帧,这有助于目标搜索过程。此外,所提出的MMSTC网络可以轻松扩展到各种跟踪框架。在五个流行的RGB-T跟踪基准上取得的新的最优结果证明了我们提出的跟踪器相对于现有跟踪器的优越性。

相似文献

5
6
Middle-Level Feature Fusion for Lightweight RGB-D Salient Object Detection.用于轻量级RGB-D显著目标检测的中级特征融合
IEEE Trans Image Process. 2022;31:6621-6634. doi: 10.1109/TIP.2022.3214092. Epub 2022 Oct 26.
7
QueryTrack: Joint-Modality Query Fusion Network for RGBT Tracking.QueryTrack:用于RGBT跟踪的联合模态查询融合网络
IEEE Trans Image Process. 2024;33:3187-3199. doi: 10.1109/TIP.2024.3393298. Epub 2024 May 6.
8
9
Channel Exchanging for RGB-T Tracking.通道交换的 RGB-T 跟踪。
Sensors (Basel). 2021 Aug 28;21(17):5800. doi: 10.3390/s21175800.
10
3-D Convolutional Neural Networks for RGB-D Salient Object Detection and Beyond.用于RGB-D显著目标检测及其他应用的3D卷积神经网络
IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):4309-4323. doi: 10.1109/TNNLS.2022.3202241. Epub 2024 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验