Suppr超能文献

MEFFNet:在自愿和 FES 诱导的动态收缩期间预测健康和中风后肌肉疲劳的肌电指数。

MEFFNet: Forecasting Myoelectric Indices of Muscle Fatigue in Healthy and Post-Stroke During Voluntary and FES-Induced Dynamic Contractions.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:2598-2611. doi: 10.1109/TNSRE.2024.3431024. Epub 2024 Jul 26.

Abstract

Myoelectric indices forecasting is important for muscle fatigue monitoring in wearable technologies, adaptive control of assistive devices like exoskeletons and prostheses, functional electrical stimulation (FES)-based Neuroprostheses, and more. Non-stationary temporal development of these indices in dynamic contractions makes forecasting difficult. This study aims at incorporating transfer learning into a deep learning model, Myoelectric Fatigue Forecasting Network (MEFFNet), to forecast myoelectric indices of fatigue (both time and frequency domain) obtained during voluntary and FES-induced dynamic contractions in healthy and post-stroke subjects respectively. Different state-of-the-art deep learning models along with the novel MEFFNet architecture were tested on myoelectric indices of fatigue obtained during [Formula: see text] voluntary elbow flexion and extension with four different weights (1 kg, 2 kg, 3 kg, and 4 kg) in sixteen healthy subjects, and [Formula: see text] FES-induced elbow flexion in sixteen healthy and seventeen post-stroke subjects under three different stimulation patterns (customized rectangular, trapezoidal, and muscle synergy-based). A version of MEFFNet, named as pretrained MEFFNet, was trained on a dataset of sixty thousand synthetic time series to transfer its learning on real time series of myoelectric indices of fatigue. The pretrained MEFFNet could forecast up to 22.62 seconds, 60 timesteps, in future with a mean absolute percentage error of 15.99 ± 6.48% in voluntary and 11.93 ± 4.77% in FES-induced contractions, outperforming the MEFFNet and other models under consideration. The results suggest combining the proposed model with wearable technology, prosthetics, robotics, stimulation devices, etc. to improve performance. Transfer learning in time series forecasting has potential to improve wearable sensor predictions.

摘要

肌电指标预测对于可穿戴技术中的肌肉疲劳监测、外骨骼和假肢等辅助设备的自适应控制、基于功能性电刺激 (FES) 的神经假体等非常重要。这些指标在动态收缩中的非平稳时间发展使得预测变得困难。本研究旨在将迁移学习纳入深度学习模型——肌电疲劳预测网络 (MEFFNet) 中,以分别预测健康人和中风后患者在自愿和 FES 诱导的动态收缩期间获得的肌电疲劳指标(时域和频域)。在 16 名健康受试者中,使用四种不同重量(1 公斤、2 公斤、3 公斤和 4 公斤)进行[Formula: see text]自愿肘屈伸运动,以及在 16 名健康受试者和 17 名中风后患者中使用三种不同刺激模式(定制矩形、梯形和基于肌肉协同的)进行[Formula: see text]FES 诱导的肘屈伸运动,对不同的最先进的深度学习模型和新型 MEFFNet 架构进行了测试。一种名为预训练 MEFFNet 的 MEFFNet 版本在六万条合成时间序列数据集上进行了训练,以转移其对肌电疲劳真实时间序列的学习。预训练的 MEFFNet 可以在未来预测长达 22.62 秒、60 个时间步,在自愿收缩中的平均绝对百分比误差为 15.99±6.48%,在 FES 诱导收缩中的平均绝对百分比误差为 11.93±4.77%,优于考虑中的 MEFFNet 和其他模型。结果表明,将提出的模型与可穿戴技术、假肢、机器人、刺激设备等结合使用,可以提高性能。时间序列预测中的迁移学习有可能提高可穿戴传感器的预测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验