Froitzheim Thomas, Kunze Lukas, Grimme Stefan, Herbert John M, Mewes Jan-Michael
Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
J Phys Chem A. 2024 Aug 1;128(30):6324-6335. doi: 10.1021/acs.jpca.4c03273. Epub 2024 Jul 19.
Charge-transfer (CT) excited states are crucial to organic light-emitting diodes (OLEDs), particularly to those based on thermally activated delayed fluorescence (TADF). However, accurately modeling CT states remains challenging, even with modern implementations of (time-dependent) density functional theory [(TD-)DFT], especially in a dielectric environment. To identify shortcomings and improve the methodology, we previously established the STGABS27 benchmark set with highly accurate experimental references for the adiabatic energy gap between the lowest singlet and triplet excited states (Δ). Here, we diversify this set to the STGABS27-EMS benchmark by including experimental emission energies () and use this new set to (re)-evaluate various DFT-based approaches. Surprisingly, these tests demonstrate that a state-specific (un)restricted open-shell Kohn-Sham (U/ROKS) DFT coupled with a polarizable continuum model for perturbative state-specific nonequilibrium solvation (ptSS-PCM) provides exceptional accuracy for predicting over a wide range of density functionals. In contrast, the main workhorse of the field, Tamm-Dancoff-approximated TD-DFT (TDA-DFT) paired with the same ptSS-PCM, is distinctly less accurate and strongly functional-dependent. More importantly, while TDA-DFT requires the choice of two very different density functionals for good performance on either Δ or , the time-independent U/ROKS/PCM approaches deliver excellent accuracy for both quantities with a wide variety of functionals.
电荷转移(CT)激发态对有机发光二极管(OLED)至关重要,特别是对基于热激活延迟荧光(TADF)的器件而言。然而,即便采用(含时)密度泛函理论[(TD-)DFT]的现代方法,精确模拟CT态仍具挑战性,尤其是在介电环境中。为找出不足之处并改进方法,我们先前建立了STGABS27基准集,其中包含关于最低单重态和三重态激发态之间绝热能隙(Δ)的高精度实验参考值。在此,我们通过纳入实验发射能量()将该基准集扩展为STGABS27-EMS基准集,并使用这个新基准集重新评估各种基于DFT的方法。令人惊讶的是,这些测试表明,一种针对特定状态的(非)限制开壳层Kohn-Sham(U/ROKS)DFT与用于微扰特定状态非平衡溶剂化的极化连续介质模型(ptSS-PCM)相结合,在预测广泛密度泛函的方面具有出色的准确性。相比之下,该领域的主要方法,即与相同ptSS-PCM配对的Tamm-Dancoff近似TD-DFT(TDA-DFT),准确性明显较低且强烈依赖于泛函。更重要的是,虽然TDA-DFT在Δ或上表现良好需要选择两种非常不同的密度泛函,但与时间无关的U/ROKS/PCM方法使用多种泛函对这两个量都能提供出色的准确性。