Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, USA.
Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, USA.
Nat Commun. 2024 Jul 20;15(1):6112. doi: 10.1038/s41467-024-50285-1.
Ductal carcinoma in situ (DCIS) is a pre-invasive tumor that can progress to invasive breast cancer, a leading cause of cancer death. We generate a large-scale tissue microarray dataset of chromatin images, from 560 samples from 122 female patients in 3 disease stages and 11 phenotypic categories. Using representation learning on chromatin images alone, without multiplexed staining or high-throughput sequencing, we identify eight morphological cell states and tissue features marking DCIS. All cell states are observed in all disease stages with different proportions, indicating that cell states enriched in invasive cancer exist in small fractions in normal breast tissue. Tissue-level analysis reveals significant changes in the spatial organization of cell states across disease stages, which is predictive of disease stage and phenotypic category. Taken together, we show that chromatin imaging represents a powerful measure of cell state and disease stage of DCIS, providing a simple and effective tumor biomarker.
导管原位癌 (DCIS) 是一种侵袭前肿瘤,可进展为浸润性乳腺癌,是癌症死亡的主要原因。我们生成了一个大规模的组织微阵列数据集,包含来自 122 名女性患者的 560 个样本,分为 3 个疾病阶段和 11 个表型类别。我们仅使用染色质图像的表示学习,而不使用多重染色或高通量测序,就可以识别出 8 种形态学细胞状态和标记 DCIS 的组织特征。所有细胞状态在所有疾病阶段都以不同的比例存在,这表明富含侵袭性癌症的细胞状态在正常乳腺组织中以小部分存在。组织水平分析揭示了细胞状态在疾病阶段的空间组织发生了显著变化,这可以预测疾病阶段和表型类别。总之,我们表明染色质成像代表了 DCIS 的细胞状态和疾病阶段的有力衡量标准,提供了一种简单有效的肿瘤生物标志物。