McDougall Stuart J, Ong Zhi Yi, Heller Rosa, Horton Anna, Thek Kimberly K, Choi Eun A, McNally Gavan P, Lawrence Andrew J
Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
J Neurochem. 2024 Sep;168(9):3116-3131. doi: 10.1111/jnc.16180. Epub 2024 Jul 20.
The nucleus of the solitary tract (NTS) receives direct viscerosensory vagal afferent input that drives autonomic reflexes, neuroendocrine function and modulates behaviour. A subpopulation of NTS neurons project to the nucleus accumbens (NAc); however, the function of this NTS-NAc pathway remains unknown. A combination of neuroanatomical tracing, slice electrophysiology and fibre photometry was used in mice and/or rats to determine how NTS-NAc neurons fit within the viscerosensory network. NTS-NAc projection neurons are predominantly located in the medial and caudal portions of the NTS with 54 ± 7% (mice) and 65 ± 3% (rat) being TH-positive, representing the A2 NTS cell group. In horizontal brainstem slices, solitary tract (ST) stimulation evoked excitatory post-synaptic currents (EPSCs) in NTS-NAc projection neurons. The majority (75%) received low-jitter, zero-failure EPSCs characteristic of monosynaptic ST afferent input that identifies them as second order to primary sensory neurons. We then examined whether NTS-NAc neurons respond to cholecystokinin (CCK, 20 μg/kg ip) in vivo in both mice and rats. Surprisingly, there was no difference in the number of activated NTS-NAc cells between CCK and saline-treated mice. In rats, just 6% of NTS-NAc cells were recruited by CCK. As NTS TH neurons are the primary source for NAc noradrenaline, we measured noradrenaline release in the NAc and showed that NAc noradrenaline levels declined in response to cue-induced reward retrieval but not foot shock. Combined, these findings suggest that high-fidelity afferent information from viscerosensory afferents reaches the NAc. These signals are likely unrelated to CCK-sensitive vagal afferents but could interact with other sensory and higher order inputs to modulate learned appetitive behaviours.
孤束核(NTS)接收直接的内脏感觉迷走神经传入输入,该输入驱动自主反射、神经内分泌功能并调节行为。NTS神经元的一个亚群投射到伏隔核(NAc);然而,这条NTS-NAc通路的功能仍然未知。在小鼠和/或大鼠中使用神经解剖学追踪、脑片电生理学和纤维光度法的组合,以确定NTS-NAc神经元如何融入内脏感觉网络。NTS-NAc投射神经元主要位于NTS的内侧和尾部,其中54±7%(小鼠)和65±3%(大鼠)为酪氨酸羟化酶(TH)阳性,代表A2 NTS细胞群。在水平脑干切片中,孤束(ST)刺激在NTS-NAc投射神经元中诱发兴奋性突触后电流(EPSCs)。大多数(75%)接收低抖动、零失败的EPSCs,这是单突触ST传入输入的特征,将它们识别为初级感觉神经元的二级神经元。然后,我们在小鼠和大鼠体内检查NTS-NAc神经元是否对胆囊收缩素(CCK,20μg/kg腹腔注射)有反应。令人惊讶的是,CCK处理组和生理盐水处理组小鼠之间激活的NTS-NAc细胞数量没有差异。在大鼠中,只有6%的NTS-NAc细胞被CCK募集。由于NTS TH神经元是NAc去甲肾上腺素的主要来源,我们测量了NAc中的去甲肾上腺素释放,并表明NAc去甲肾上腺素水平在提示诱导的奖励获取时下降,但在足部电击时没有下降。综合这些发现表明,来自内脏感觉传入的高保真传入信息到达NAc。这些信号可能与CCK敏感的迷走神经传入无关,但可能与其他感觉和高阶输入相互作用,以调节习得的食欲行为。