文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在大鼠迷走神经传入神经元中,胆囊收缩素受体的表达和信号传导在一天中的不同时间保持恒定。

Cholecystokinin receptor expression and signaling remain constant across time of day in rat vagal afferent neurons.

作者信息

Arnold Rachel A, Peterson BreeAnne, Peters James Henry

机构信息

Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States.

出版信息

Am J Physiol Cell Physiol. 2025 Sep 1;329(3):C812-C820. doi: 10.1152/ajpcell.00484.2025. Epub 2025 Jul 31.


DOI:10.1152/ajpcell.00484.2025
PMID:40742020
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12382367/
Abstract

Circadian rhythms are endogenous biological clocks that regulate physiology and behaviors, such as food intake, and are synchronized by the environmental light/dark cycle. The nucleus of the solitary tract (NTS) receives excitatory glutamatergic inputs from vagal afferent neurons that innervate the gastrointestinal tract and are sensitive to the gut peptide cholecystokinin (CCK), which is released following food intake to promote satiation. Previously, we observed that NTS membrane properties, neurotransmission, and action potential firings were all under circadian control. Although it is well established that the food intake varies with the light/dark cycle, circadian variations in the cellular actions of CCK on vagal afferent neurons remain unknown. Here, we test the extent to which CCK signaling on vagal afferents and the NTS changes as a function of time of day. We used RT-qPCR and functional cellular measurements to measure gene expression and responses to CCK across the time of day in rats. Although we confirmed the presence of rhythmic clock gene expression in vagal afferent neurons, we found that CCK1 receptors did not show diurnal rhythmicity. We also observed that CCK-induced calcium responses were consistent during the day and night in dissociated vagal afferent neurons. Similarly, CCK-driven increases in spontaneous glutamate release were also constant across the light cycle at the vagal afferent-NTS synapse. We conclude that vagal afferent CCK signaling remains constant across the light cycle, and CCK1 receptors provide a consistent point of reference independent of the time of day. Daily rhythms govern feeding and the processes of satiation conveyed by cholecystokinin acting on vagal afferent neurons. Yet, the putative changes in efficacy and direct cellular effects of CCK on vagal afferents across the time of day remain unknown. Here, we report constant CCK1 receptor expression and signaling in vagal afferents across the light cycle. This model indicates a fixed point of reference for CCK signaling in parallel to documented circadian changes in feeding neurocircuitry.

摘要

昼夜节律是调节生理和行为(如食物摄入)的内源性生物钟,并通过环境光/暗周期同步。孤束核(NTS)从支配胃肠道的迷走传入神经元接收兴奋性谷氨酸能输入,这些神经元对胆囊收缩素(CCK)敏感,CCK在食物摄入后释放以促进饱腹感。此前,我们观察到NTS的膜特性、神经传递和动作电位发放均受昼夜节律控制。虽然食物摄入量随光/暗周期变化已得到充分证实,但CCK对迷走传入神经元的细胞作用的昼夜变化仍不清楚。在此,我们测试了CCK在迷走传入神经和NTS上的信号传导随一天中时间的变化程度。我们使用逆转录定量聚合酶链反应(RT-qPCR)和功能性细胞测量来测量大鼠一天中不同时间对CCK的基因表达和反应。虽然我们证实了迷走传入神经元中存在节律性生物钟基因表达,但我们发现CCK1受体没有显示出昼夜节律性。我们还观察到,在解离的迷走传入神经元中,CCK诱导的钙反应在白天和晚上是一致的。同样,在迷走传入神经 - NTS突触处,CCK驱动的自发性谷氨酸释放增加在整个光周期中也保持恒定。我们得出结论,迷走传入神经的CCK信号在整个光周期中保持恒定,并且CCK1受体提供了一个与一天中的时间无关的一致参考点。日常节律控制着进食以及胆囊收缩素作用于迷走传入神经元所传达的饱腹感过程。然而,CCK在一天中不同时间对迷走传入神经的功效和直接细胞效应的假定变化仍不清楚。在此,我们报告了迷走传入神经在整个光周期中CCK1受体表达和信号传导保持恒定。该模型表明CCK信号传导有一个固定的参考点,与记录的进食神经回路中的昼夜变化并行。

相似文献

[1]
Cholecystokinin receptor expression and signaling remain constant across time of day in rat vagal afferent neurons.

Am J Physiol Cell Physiol. 2025-9-1

[2]
CCK-expressing neurons in the NTS are directly activated by CCK-sensitive C-type vagal afferents.

Am J Physiol Regul Integr Comp Physiol. 2025-1-1

[3]
Circadian regulation of glutamate release pathways shapes synaptic throughput in the brainstem nucleus of the solitary tract (NTS).

J Physiol. 2023-5

[4]
Viscerosensory signalling to the nucleus accumbens via the solitary tract nucleus.

J Neurochem. 2024-9

[5]
TRPV1 enhances cholecystokinin signaling in primary vagal afferent neurons and mediates the central effects on spontaneous glutamate release in the NTS.

Am J Physiol Cell Physiol. 2024-1-1

[6]
Characterization of NTS-to-VTA projection neurons reveals higher-order synaptic organization and distinct responsiveness to cholecystokinin.

J Physiol. 2025-9

[7]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[8]
Principles of synaptic encoding of brainstem circadian rhythms.

Exp Physiol. 2024-12

[9]
Vagotomy blunts cardiorespiratory responses to vagal afferent stimulation via pre- and postsynaptic effects in the nucleus tractus solitarii.

J Physiol. 2024-3

[10]
CCK-induced reduction of food intake and hindbrain MAPK signaling are mediated by NMDA receptor activation.

Endocrinology. 2012-4-16

本文引用的文献

[1]
TRPV1 enhances cholecystokinin signaling in primary vagal afferent neurons and mediates the central effects on spontaneous glutamate release in the NTS.

Am J Physiol Cell Physiol. 2024-1-1

[2]
Circadian regulation of glutamate release pathways shapes synaptic throughput in the brainstem nucleus of the solitary tract (NTS).

J Physiol. 2023-5

[3]
Gastrointestinal Vagal Afferents and Food Intake: Relevance of Circadian Rhythms.

Nutrients. 2021-3-5

[4]
Circadian Rhythms of the Hypothalamus: From Function to Physiology.

Clocks Sleep. 2021-2-25

[5]
Timekeeping in the hindbrain: a multi-oscillatory circadian centre in the mouse dorsal vagal complex.

Commun Biol. 2020-5-8

[6]
NTS Catecholamine Neurons Mediate Hypoglycemic Hunger via Medial Hypothalamic Feeding Pathways.

Cell Metab. 2020-2-4

[7]
The circadian regulation of food intake.

Nat Rev Endocrinol. 2019-7

[8]
The metabolic role of vagal afferent innervation.

Nat Rev Gastroenterol Hepatol. 2018-10

[9]
Generation of circadian rhythms in the suprachiasmatic nucleus.

Nat Rev Neurosci. 2018-8

[10]
Ethyl Vanillin Activates TRPA1.

J Pharmacol Exp Ther. 2017-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索