Jiang Xiaoyu, Lan Yu, Hao Yudong, Jiang Kui, He Jing, Zhu Jiali, Jia Shiqi, Song Jinshuai, Li Shi-Jun, Niu Linbin
College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China.
State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, PR China.
Nat Commun. 2024 Jul 20;15(1):6115. doi: 10.1038/s41467-024-50507-6.
Reforming sustainable 3d-metal-based visible light catalytic platforms for inert bulk chemical activation is highly desirable. Herein, we demonstrate the use of a Brønsted acid to unlock robust and practical iron ligand-to-metal charge transfer (LMCT) photocatalysis for the activation of multifarious inert haloalkylcarboxylates (CXCOO, X = F or Cl) to produce CX radicals. This process enables the fluoro-polyhaloalkylation of non-activated alkenes by combining easily available Selectfluor as a fluorine source. Valuable alkyl fluorides including potential drug molecules can be easily obtained through this protocol. Mechanistic studies indicate that the real light-harvesting species may derive from the in situ-assembly of Fe, CXCOO, H, and acetonitrile solvent, in which the Brønsted acid indeed increases the efficiency of LMCT between the iron center and CXCOO via hydrogen-bond interactions. We anticipate that this Brønsted acid-unlocked iron LMCT platform would be an intriguing sustainable option to execute the activation of inert compounds.
开发用于惰性本体化学活化的可持续3D金属基可见光催化平台非常必要。在此,我们展示了使用布朗斯特酸来开启强大且实用的铁配体到金属的电荷转移(LMCT)光催化,以活化多种惰性卤代烷基羧酸盐(CXCOO,X = F或Cl)来生成CX自由基。通过结合易于获得的Selectfluor作为氟源,该过程能够实现未活化烯烃的氟代多卤烷基化。通过该方案可以轻松获得包括潜在药物分子在内的有价值的烷基氟化物。机理研究表明,真正的光捕获物种可能源自Fe、CXCOO、H和乙腈溶剂的原位组装,其中布朗斯特酸确实通过氢键相互作用提高了铁中心与CXCOO之间的LMCT效率。我们预计,这种布朗斯特酸开启的铁LMCT平台将是实现惰性化合物活化的一个有趣的可持续选择。