Suppr超能文献

一种机器学习与优化方法在预测儿童及青少年髌股关节不稳定危险因素中的应用。

Application of a machine learning and optimization method to predict patellofemoral instability risk factors in children and adolescents.

作者信息

Kwak Yoon Hae, Ko Yu Jin, Kwon Hyunjae, Koh Yong-Gon, Aldosari Amaal M, Nam Ji-Hoon, Kang Kyoung-Tak

机构信息

Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea.

Cell & Developmental Biology, University of Rochester, Rochester, New York, USA.

出版信息

Knee Surg Sports Traumatol Arthrosc. 2025 Feb;33(2):487-499. doi: 10.1002/ksa.12372. Epub 2024 Jul 21.

Abstract

PURPOSE

Conservative treatment remains the standard approach for first-time patellar dislocations. While risk factors for patellofemoral instability, a common paediatric injury, are well-established in adults, data concerning the progression of paediatric recurrent patellar dislocation remain scarce. A reproducible method was developed to quantitatively assess the patellofemoral morphology and anatomic risk factors in paediatric patients using magnetic resonance imaging (MRI) and machine learning analysis.

METHODS

Data were analyzed from a retrospective review (2005-2022) of paediatric patients diagnosed with acute lateral patellar dislocation (54 patients) who underwent MRI and were compared with an age-based control group (54 patients). Patellofemoral, tibial, tibiofemoral and patellar height parameters were measured. Differences between groups were analyzed with respect to MRI parameters. The potential diagnostic utility of the parameters was assessed via machine learning and genetic algorithm analyses.

RESULTS

Significant differences were observed between the two groups in six patellofemoral morphological parameters. Regarding patellar height morphological parameters, all methods exhibited significant between-group differences. Among the tibia and tibiofemoral morphological parameters, only the tibial tubercle-trochlear groove distance exhibited significant differences between the two groups. No sex-related differences were present. Significant variations were observed in patellar height parameters, particularly in the Koshino-Sugimoto (KS) index, which had the highest area under the curve (AUC: 0.87). Using genetic algorithms and logistic regression, our model excelled with seven key independent variables.

CONCLUSION

KS index and Wiberg index had the strongest association with lateral patellar dislocation. An optimized logistic regression model achieved an AUC of 0.934. Such performance is considered clinically relevant, indicating the model's effectiveness for the intended application.

LEVEL OF EVIDENCE

Level Ⅲ.

摘要

目的

保守治疗仍是首次髌骨脱位的标准治疗方法。虽然髌股关节不稳定(一种常见的儿科损伤)的危险因素在成人中已得到充分证实,但关于小儿复发性髌骨脱位进展的数据仍然很少。本研究开发了一种可重复的方法,使用磁共振成像(MRI)和机器学习分析定量评估小儿患者的髌股关节形态和解剖学危险因素。

方法

对2005年至2022年诊断为急性外侧髌骨脱位的小儿患者(54例)进行回顾性分析,这些患者均接受了MRI检查,并与基于年龄的对照组(54例)进行比较。测量髌股关节、胫骨、胫股关节和髌骨高度参数。分析两组在MRI参数方面的差异。通过机器学习和遗传算法分析评估这些参数的潜在诊断效用。

结果

两组在六个髌股关节形态参数上存在显著差异。关于髌骨高度形态参数,所有方法在组间均表现出显著差异。在胫骨和胫股关节形态参数中,只有胫骨结节-滑车沟距离在两组之间存在显著差异。不存在性别相关差异。髌骨高度参数存在显著变化,尤其是Koshino-Sugimoto(KS)指数,其曲线下面积最高(AUC:0.87)。使用遗传算法和逻辑回归,我们的模型在七个关键自变量上表现出色。

结论

KS指数和Wiberg指数与外侧髌骨脱位的相关性最强。优化后的逻辑回归模型的AUC为0.934。这种性能被认为具有临床相关性,表明该模型在预期应用中的有效性。

证据水平

Ⅲ级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验