du Rand Alex, Hunt John, Samson Christopher, Loef Evert, Malhi Chloe, Meidinger Sarah, Chen Chun-Jen Jennifer, Nutsford Ashley, Taylor John, Dunbar Rod, Purvis Diana, Feisst Vaughan, Sheppard Hilary
School of Biological Sciences The University of Auckland Auckland New Zealand.
Te Whatu Ora Health New Zealand Te Toka Tumai Auckland New Zealand.
Bioeng Transl Med. 2024 Jan 17;9(4):e10640. doi: 10.1002/btm2.10640. eCollection 2024 Jul.
Gene therapy based on the CRISPR/Cas9 system has emerged as a promising strategy for treating the monogenic fragile skin disorder recessive dystrophic epidermolysis bullosa (RDEB). With this approach problematic wounds could be grafted with gene edited, patient-specific skin equivalents. Precise gene editing using homology-directed repair (HDR) is the ultimate goal, however low efficiencies have hindered progress. Reframing strategies based on highly efficient non-homologous end joining (NHEJ) repair aimed at excising dispensable, mutation-harboring exons offer a promising alternative approach for restoring the open reading frame. To this end, we employed an exon skipping strategy using dual single guide RNA (sgRNA)/Cas9 ribonucleoproteins (RNPs) targeted at three novel exons (31, 68, and 109) containing pathogenic heterozygous mutations, and achieved exon deletion rates of up to 95%. Deletion of exon 31 in both primary human RDEB keratinocytes and fibroblasts resulted in the restoration of type VII collagen (C7), leading to increased cellular adhesion in vitro and accurate C7 deposition at the dermal-epidermal junction in a 3D skin model. Taken together, we extend the list of exons amenable to therapeutic deletion. As an incidental finding, we find that long-read Nanopore sequencing detected large on-target structural variants comprised of deletions up to >5 kb at a frequency of ~10%. Although this frequency may be acceptable given the high rates of intended editing outcomes, our data demonstrate that standard short-read sequencing may underestimate the full range of unexpected Cas9-mediated editing events.
基于CRISPR/Cas9系统的基因疗法已成为治疗单基因脆性皮肤病——隐性营养不良性大疱性表皮松解症(RDEB)的一种有前景的策略。通过这种方法,可以用经过基因编辑的、患者特异性的皮肤等效物来移植有问题的伤口。使用同源定向修复(HDR)进行精确的基因编辑是最终目标,然而低效率阻碍了进展。基于高效非同源末端连接(NHEJ)修复的重新设计策略旨在切除含有突变的可缺失外显子,为恢复开放阅读框提供了一种有前景的替代方法。为此,我们采用了一种外显子跳跃策略,使用靶向三个含有致病性杂合突变的新外显子(31、68和109)的双单导向RNA(sgRNA)/Cas9核糖核蛋白(RNP),并实现了高达95%的外显子缺失率。在原代人RDEB角质形成细胞和成纤维细胞中删除外显子31均导致VII型胶原蛋白(C7)的恢复,从而在体外增加细胞黏附,并在3D皮肤模型的真皮-表皮交界处实现准确的C7沉积。综上所述,我们扩展了适合治疗性缺失的外显子列表。作为一个偶然发现,我们发现长读长纳米孔测序检测到由高达>5 kb的缺失组成的大量靶向结构变异,频率约为10%。尽管考虑到预期编辑结果的高发生率,这个频率可能是可以接受的,但我们的数据表明,标准的短读长测序可能低估了意外的Cas9介导的编辑事件的全部范围。