Department of Environmental and Resource Engineering, Technical University of Denmark, Miljo̷vej, Building 115, Kgs. Lyngby 2800, Denmark.
Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing 100049, China.
Environ Sci Technol. 2024 Aug 6;58(31):13866-13878. doi: 10.1021/acs.est.4c02164. Epub 2024 Jul 22.
Perfluorooctanesulfonate (PFOS), a toxic anionic perfluorinated surfactant, exhibits variable electrostatic adsorption mechanisms on charge-regulated minerals depending on solution hydrochemistry. This work explores the interplay of multicomponent interactions and surface charge effects on PFOS adsorption to goethite surfaces under flow-through conditions. We conducted a series of column experiments in saturated goethite-coated porous media subjected to dynamic hydrochemical conditions triggered by step changes in the electrolyte concentration of the injected solutions. Measurements of pH and PFOS breakthrough curves at the outlet allowed tracking the propagation of multicomponent reactive fronts. We performed process-based reactive transport simulations incorporating a mechanistic network of surface complexation reactions to quantitatively interpret the geochemical processes. The experimental and modeling outcomes reveal that the coupled spatio-temporal evolution of pH and electrolyte fronts, driven by the electrostatic properties of the mineral, exerts a key control on PFOS mobility by determining its adsorption and speciation reactions on goethite surfaces. These results illuminate the important influence of multicomponent transport processes and surface charge effects on PFOS mobility, emphasizing the need for mechanistic adsorption models in reactive transport simulations of ionizable PFAS compounds to determine their environmental fate and to perform accurate risk assessment.
全氟辛烷磺酸 (PFOS) 是一种有毒的阴离子全氟表面活性剂,根据溶液水化学的变化,在电荷调节矿物上表现出可变的静电吸附机制。本工作在流动条件下探索了多组分相互作用和表面电荷效应对针铁矿表面 PFOS 吸附的相互作用。我们在饱和针铁矿涂覆的多孔介质中进行了一系列柱实验,这些介质受到注入溶液电解质浓度阶跃变化引发的动态水化学条件的影响。在出口处测量 pH 值和 PFOS 突破曲线,以跟踪多组分反应前沿的传播。我们进行了基于过程的反应传输模拟,其中包含表面络合反应的机理网络,以定量解释地球化学过程。实验和模拟结果表明,矿物的静电特性驱动的 pH 值和电解质前沿的时空演化对 PFOS 的迁移性起着关键的控制作用,决定了其在针铁矿表面的吸附和形态反应。这些结果阐明了多组分输运过程和表面电荷效应对 PFOS 迁移性的重要影响,强调了在可离解全氟烷基物质的反应传输模拟中采用机理吸附模型来确定其环境归宿并进行准确风险评估的必要性。