Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
J Lipid Res. 2024 Aug;65(8):100601. doi: 10.1016/j.jlr.2024.100601. Epub 2024 Jul 20.
Cardiolipin (CL) is a unique, four-chain phospholipid synthesized in the inner mitochondrial membrane (IMM). The acyl chain composition of CL is regulated through a remodeling pathway, whose loss causes mitochondrial dysfunction in Barth syndrome (BTHS). Yeast has been used extensively as a model system to characterize CL metabolism, but mutants lacking its two remodeling enzymes, Cld1p and Taz1p, exhibit mild structural and respiratory phenotypes compared to mammalian cells. Here, we show an essential role for CL remodeling in the structure and function of the IMM in yeast grown under reduced oxygenation. Microaerobic fermentation, which mimics natural yeast environments, caused the accumulation of saturated fatty acids and, under these conditions, remodeling mutants showed a loss of IMM ultrastructure. We extended this observation to HEK293 cells, where phospholipase A inhibition by Bromoenol lactone resulted in respiratory dysfunction and cristae loss upon mild treatment with exogenous saturated fatty acids. In microaerobic yeast, remodeling mutants accumulated unremodeled, saturated CL, but also displayed reduced total CL levels, highlighting the interplay between saturation and CL biosynthesis and/or breakdown. We identified the mitochondrial phospholipase A Ddl1p as a regulator of CL levels, and those of its precursors phosphatidylglycerol and phosphatidic acid, under these conditions. Loss of Ddl1p partially rescued IMM structure in cells unable to initiate CL remodeling and had differing lipidomic effects depending on oxygenation. These results introduce a revised yeast model for investigating CL remodeling and suggest that its structural functions are dependent on the overall lipid environment in the mitochondrion.
心磷脂(CL)是一种独特的四链磷脂,在内膜(IMM)中合成。CL 的酰基链组成通过一种重塑途径进行调节,该途径的缺失会导致巴特综合征(BTHS)中的线粒体功能障碍。酵母被广泛用作表征 CL 代谢的模型系统,但与哺乳动物细胞相比,缺乏其两种重塑酶 Cld1p 和 Taz1p 的突变体表现出轻微的结构和呼吸表型。在这里,我们表明 CL 重塑在酵母在低氧条件下生长时 IMM 的结构和功能中起着至关重要的作用。微需氧发酵模拟了自然酵母环境,导致饱和脂肪酸的积累,在这些条件下,重塑突变体表现出 IMM 超微结构的丧失。我们将这一观察结果扩展到 HEK293 细胞,在这些细胞中,磷脂酶 A 被 Bromoenol lactone 抑制,导致在温和处理外源性饱和脂肪酸时呼吸功能障碍和嵴丢失。在微需氧酵母中,重塑突变体积累了未重塑的饱和 CL,但也显示出总 CL 水平降低,突出了饱和度和 CL 生物合成和/或分解之间的相互作用。我们发现线粒体磷脂酶 A Ddl1p 是在这些条件下 CL 水平及其前体磷脂酰甘油和磷脂酸的调节剂。在无法启动 CL 重塑的细胞中,缺失 Ddl1p 部分挽救了 IMM 结构,并根据氧合作用产生不同的脂质组学效应。这些结果为研究 CL 重塑提供了一个修正的酵母模型,并表明其结构功能依赖于线粒体中的整体脂质环境。