Suppr超能文献

使用一种新颖的脑电图机器学习分析方法来测试负量化的两步模型。

Testing two-step models of negative quantification using a novel machine learning analysis of EEG.

作者信息

Ramotowska S, Archambeau K, Augurzky P, Schlotterbeck F, Berberyan H S, Van Maanen L, Szymanik J

机构信息

Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The Netherlands.

Université Libre de Bruxelles, Bruxelles, Belgium.

出版信息

Lang Cogn Neurosci. 2024 Apr 30;39(5):632-656. doi: 10.1080/23273798.2024.2345302. eCollection 2024.

Abstract

The sentences " of the students passed the exam" and " of the students failed the exam" describe the same set of situations, and yet the former results in shorter reaction times in verification tasks. The two-step model explains this result by postulating that negative quantifiers contain hidden negation, which involves an extra processing stage. To test this theory, we applied a novel EEG analysis technique focused on detecting cognitive stages (HsMM-MVPA) to data from a picture-sentence verification task. We estimated the number of processing stages during reading and verification of quantified sentences (e.g. " of the dots are blue") that followed the presentation of pictures containing coloured geometric shapes. We did not find evidence for an extra step during the verification of sentences with . We provide an alternative interpretation of our results in line with an expectation-based pragmatic account.

摘要

“有……比例的学生通过了考试”和“有……比例的学生考试不及格”这两句话描述的是同一组情况,但在验证任务中,前者的反应时间更短。两步模型通过假设否定量词包含隐藏的否定来解释这一结果,这涉及到一个额外的处理阶段。为了验证这一理论,我们将一种专注于检测认知阶段的新型脑电图分析技术(HsMM-MVPA)应用于一个图片-句子验证任务的数据。我们估计了在呈现包含彩色几何形状的图片后,对量化句子(例如“有……比例的点是蓝色的”)进行阅读和验证时的处理阶段数量。我们没有找到在验证包含……的句子时存在额外步骤的证据。我们根据基于预期的语用解释对我们的结果提供了另一种解读。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc12/11261742/7dacb042b5dc/PLCP_A_2345302_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验