Suppr超能文献

用于医学数据结构化的自动化算法,以及在安全环境中使用人工智能进行分割以创建数据集。

Automated algorithm for medical data structuring, and segmentation using artificial intelligence within secured environment for dataset creation.

作者信息

Nainamalai Varatharajan, Qair Hemin Ali, Pelanis Egidijus, Jenssen Håvard Bjørke, Fretland Åsmund Avdem, Edwin Bjørn, Elle Ole Jakob, Balasingham Ilangko

机构信息

The Intervention Centre, Rikshospitalet, Oslo University Hospital, Oslo, Norway.

Institute of Clinical Medicine, University of Oslo, Oslo, Norway.

出版信息

Eur J Radiol Open. 2024 Jun 27;13:100582. doi: 10.1016/j.ejro.2024.100582. eCollection 2024 Dec.

Abstract

OBJECTIVE

Routinely collected electronic health records using artificial intelligence (AI)-based systems bring out enormous benefits for patients, healthcare centers, and its industries. Artificial intelligence models can be used to structure a wide variety of unstructured data.

METHODS

We present a semi-automatic workflow for medical dataset management, including data structuring, research extraction, AI-ground truth creation, and updates. The algorithm creates directories based on keywords in new file names.

RESULTS

Our work focuses on organizing computed tomography (CT), magnetic resonance (MR) images, patient clinical data, and segmented annotations. In addition, an AI model is used to generate different initial labels that can be edited manually to create ground truth labels. The manually verified ground truth labels are later included in the structured dataset using an automated algorithm for future research.

CONCLUSION

This is a workflow with an AI model trained on local hospital medical data with output based/adapted to the users and their preferences. The automated algorithms and AI model could be implemented inside a secondary secure environment in the hospital to produce inferences.

摘要

目的

使用基于人工智能(AI)的系统进行常规收集的电子健康记录,为患者、医疗保健中心及其相关行业带来了巨大益处。人工智能模型可用于构建各种非结构化数据。

方法

我们提出了一种用于医疗数据集管理的半自动工作流程,包括数据结构化、研究提取、人工智能真值创建和更新。该算法根据新文件名中的关键词创建目录。

结果

我们的工作重点是整理计算机断层扫描(CT)、磁共振(MR)图像、患者临床数据和分割注释。此外,使用人工智能模型生成不同的初始标签,这些标签可手动编辑以创建真值标签。经过人工验证的真值标签随后使用自动算法纳入结构化数据集中,以供未来研究使用。

结论

这是一种工作流程,其人工智能模型基于当地医院医疗数据进行训练,输出基于用户及其偏好并进行了调整。自动算法和人工智能模型可在医院的二级安全环境中实施以进行推理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6502/11260947/eb2dbfd6dc1b/gr2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验