Sivasakthi Pandiyan, Samanta Pralok K
Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad-500078, India.
Department of Chemistry, School of Science, GITAM University, Hyderabad-502329, India.
Phys Chem Chem Phys. 2024 Jul 31;26(30):20672-20683. doi: 10.1039/d4cp00637b.
Multi-resonance thermally-activated delayed fluorescence (MR-TADF) is predominantly observed in organoboron heteroatom-embedded molecules, featuring enhanced performance in organic light-emitting diodes (OLEDs) with high color purity, chemical stability, and excellent photoluminescence quantum yields. However, predicting the impact of any chemical change remains a challenge. Computational methods including density functional theory (DFT) still require accurate descriptions of photophysical properties of MR-TADF emitters. To circumvent this drawback, we explored recent investigations on the CzBX (Cz = carbazole, X = O, S, or Se) molecule as a central building block. We constructed a series of MR-TADF molecules by controlling chalcogen atom embedding, employing a combined approach of DFT and coupled-cluster (CCSD) methods. Our predicted results for MR-TADF emitter molecules align with the reported experimental data in the literature. The variation in the positions of chalcogen atoms embedded within the CzBX2X framework imparts unique photophysical properties.
多共振热激活延迟荧光(MR-TADF)主要在嵌入有机硼杂原子的分子中观察到,其在具有高色纯度、化学稳定性和优异光致发光量子产率的有机发光二极管(OLED)中表现出增强的性能。然而,预测任何化学变化的影响仍然是一个挑战。包括密度泛函理论(DFT)在内的计算方法仍然需要对MR-TADF发射体的光物理性质进行准确描述。为了克服这一缺点,我们探索了最近对作为核心构建单元的CzBX(Cz = 咔唑,X = O、S或Se)分子的研究。我们通过控制硫族原子嵌入,采用DFT和耦合簇(CCSD)方法相结合的方式构建了一系列MR-TADF分子。我们对MR-TADF发射体分子的预测结果与文献中报道的实验数据一致。嵌入CzBX2X框架内的硫族原子位置的变化赋予了独特的光物理性质。