Suppr超能文献

采用密度泛函理论(DFT)和耦合簇单双激发(CCSD)方法相结合揭示多共振有机发光二极管(OLED)发光体的光物理和激发态性质。

Unveiling the photophysical and excited state properties of multi-resonant OLED emitters using combined DFT and CCSD method.

作者信息

Sivasakthi Pandiyan, Samanta Pralok K

机构信息

Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad-500078, India.

Department of Chemistry, School of Science, GITAM University, Hyderabad-502329, India.

出版信息

Phys Chem Chem Phys. 2024 Jul 31;26(30):20672-20683. doi: 10.1039/d4cp00637b.

Abstract

Multi-resonance thermally-activated delayed fluorescence (MR-TADF) is predominantly observed in organoboron heteroatom-embedded molecules, featuring enhanced performance in organic light-emitting diodes (OLEDs) with high color purity, chemical stability, and excellent photoluminescence quantum yields. However, predicting the impact of any chemical change remains a challenge. Computational methods including density functional theory (DFT) still require accurate descriptions of photophysical properties of MR-TADF emitters. To circumvent this drawback, we explored recent investigations on the CzBX (Cz = carbazole, X = O, S, or Se) molecule as a central building block. We constructed a series of MR-TADF molecules by controlling chalcogen atom embedding, employing a combined approach of DFT and coupled-cluster (CCSD) methods. Our predicted results for MR-TADF emitter molecules align with the reported experimental data in the literature. The variation in the positions of chalcogen atoms embedded within the CzBX2X framework imparts unique photophysical properties.

摘要

多共振热激活延迟荧光(MR-TADF)主要在嵌入有机硼杂原子的分子中观察到,其在具有高色纯度、化学稳定性和优异光致发光量子产率的有机发光二极管(OLED)中表现出增强的性能。然而,预测任何化学变化的影响仍然是一个挑战。包括密度泛函理论(DFT)在内的计算方法仍然需要对MR-TADF发射体的光物理性质进行准确描述。为了克服这一缺点,我们探索了最近对作为核心构建单元的CzBX(Cz = 咔唑,X = O、S或Se)分子的研究。我们通过控制硫族原子嵌入,采用DFT和耦合簇(CCSD)方法相结合的方式构建了一系列MR-TADF分子。我们对MR-TADF发射体分子的预测结果与文献中报道的实验数据一致。嵌入CzBX2X框架内的硫族原子位置的变化赋予了独特的光物理性质。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验