人工智能在口腔癌和口腔发育异常中的应用。

Artificial Intelligence Applications in Oral Cancer and Oral Dysplasia.

机构信息

Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, California, USA.

Bernard & Gloria Pepper Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA.

出版信息

Tissue Eng Part A. 2024 Oct;30(19-20):640-651. doi: 10.1089/ten.TEA.2024.0096. Epub 2024 Aug 7.

Abstract

Oral squamous cell carcinoma (OSCC) is a highly unpredictable disease with devastating mortality rates that have not changed over the past decades, in the face of advancements in treatments and biomarkers, which have improved survival for other cancers. Delays in diagnosis are frequent, leading to more disfiguring treatments and poor outcomes for patients. The clinical challenge lies in identifying those patients at the highest risk of developing OSCC. Oral epithelial dysplasia (OED) is a precursor of OSCC with highly variable behavior across patients. There is no reliable clinical, pathological, histological, or molecular biomarker to determine individual risk in OED patients. Similarly, there are no robust biomarkers to predict treatment outcomes or mortality in OSCC patients. This review aims to highlight advancements in artificial intelligence (AI)-based methods to develop predictive biomarkers of OED transformation to OSCC or predictive biomarkers of OSCC mortality and treatment response. Biomarkers such as S100A7 demonstrate promising appraisal for the risk of malignant transformation of OED. Machine learning-enhanced multiplex immunohistochemistry workflows examine immune cell patterns and organization within the tumor immune microenvironment to generate outcome predictions in immunotherapy. Deep learning (DL) is an AI-based method using an extended neural network or related architecture with multiple "hidden" layers of simulated neurons to combine simple visual features into complex patterns. DL-based digital pathology is currently being developed to assess OED and OSCC outcomes. The integration of machine learning in epigenomics aims to examine the epigenetic modification of diseases and improve our ability to detect, classify, and predict outcomes associated with epigenetic marks. Collectively, these tools showcase promising advancements in discovery and technology, which may provide a potential solution to addressing the current limitations in predicting OED transformation and OSCC behavior, both of which are clinical challenges that must be addressed in order to improve OSCC survival.

摘要

口腔鳞状细胞癌(OSCC)是一种高度不可预测的疾病,尽管在治疗和生物标志物方面取得了进展,提高了其他癌症的生存率,但过去几十年来其死亡率并未改变。诊断的延误很常见,导致患者需要接受更具破坏性的治疗和预后较差。临床挑战在于识别那些患有 OSCC 风险最高的患者。口腔上皮异型增生(OED)是 OSCC 的前驱病变,患者之间的行为具有高度可变性。目前还没有可靠的临床、病理、组织学或分子生物标志物来确定 OED 患者的个体风险。同样,也没有可靠的生物标志物来预测 OSCC 患者的治疗结果或死亡率。本综述旨在强调基于人工智能(AI)的方法在开发 OED 向 OSCC 转化或 OSCC 死亡率和治疗反应的预测性生物标志物方面的进展。S100A7 等生物标志物显示出有希望评估 OED 恶性转化风险的能力。机器学习增强的多重免疫组化工作流程检查肿瘤免疫微环境中免疫细胞的模式和组织,以生成免疫治疗的结果预测。深度学习(DL)是一种基于 AI 的方法,使用扩展的神经网络或相关架构,具有多个“隐藏”层模拟神经元,将简单的视觉特征组合成复杂的模式。基于 DL 的数字病理学目前正在开发中,用于评估 OED 和 OSCC 的结果。机器学习在表观基因组学中的集成旨在研究疾病的表观遗传修饰,提高我们检测、分类和预测与表观遗传标记相关的结果的能力。这些工具共同展示了在发现和技术方面的有前途的进展,这可能为解决预测 OED 转化和 OSCC 行为方面的当前局限性提供潜在的解决方案,这两个方面都是必须解决的临床挑战,以提高 OSCC 的生存率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索