Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2024 Nov 4;63(45):e202411981. doi: 10.1002/anie.202411981. Epub 2024 Sep 12.
We construct a compartmentalized nanoarchitecture to regulate bioenergy level. Glucose dehydrogenase, urease and nicotinamide adenine dinucleotide are encapsulated inside through liquid-liquid phase separation. ATPase and glucose transporter embedded in hybrid liposomes are attached at the surface. Glucose is transported and converted to gluconic acid catalyzed by glucose dehydrogenase, resulting in an outward proton gradient to drive ATPase for ATP synthesis. In parallel, urease catalyzes hydrolysis of urea to generate ammonia, which leads to an inward proton gradient to drive ATPase for ATP hydrolysis. These processes lead to a change of the direction of proton gradient, thus achieving artificial ATP oscillation. Importantly, the frequency and the amplitude of the oscillation can be programmed. The work explores nanoarchitectonics integrating multiple components to realize artificial and precise oscillation of bioenergy level.
我们构建了一种分隔的纳米结构来调节生物能量水平。通过液-液相分离将葡萄糖脱氢酶、脲酶和烟酰胺腺嘌呤二核苷酸包裹在内部。ATP 酶和嵌入混合脂质体中的葡萄糖转运蛋白附着在表面。葡萄糖在葡萄糖脱氢酶的催化下被转运并转化为葡萄糖酸,导致向外质子梯度驱动 ATP 酶合成 ATP。同时,脲酶催化尿素水解生成氨,导致向内质子梯度驱动 ATP 酶水解 ATP。这些过程导致质子梯度方向的变化,从而实现人工 ATP 振荡。重要的是,振荡的频率和幅度可以编程。这项工作探索了集成多个组件的纳米结构设计,以实现生物能量水平的人工和精确振荡。