Otrin Lado, Kleineberg Christin, Caire da Silva Lucas, Landfester Katharina, Ivanov Ivan, Wang Minhui, Bednarz Claudia, Sundmacher Kai, Vidaković-Koch Tanja
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany.
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
Adv Biosyst. 2019 Jun;3(6):e1800323. doi: 10.1002/adbi.201800323. Epub 2019 Mar 10.
One of the critical steps in sustaining life-mimicking processes in synthetic cells is energy, i.e., adenosine triphosphate (ATP) regeneration. Previous studies have shown that the simple addition of ATP or ATP regeneration systems, which do not regenerate ATP directly from ADP and P , have no or only limited success due to accumulation of ATP hydrolysis products. In general, ATP regeneration can be achieved by converting light or chemical energy into ATP, which may also involve redox transformations of cofactors. The present contribution provides an overview of the existing ATP regeneration strategies and the related nicotinamide adenine dinucleotide (NAD ) redox cycling, with a focus on compartmentalized systems. Special attention is being paid to those approaches where so-called artificial organelles are developed. They comprise a semipermeable membrane functionalized by biological or man-made components and employ external energy in the form of light or nutrients in order to generate a transmembrane proton gradient, which is further utilized for ATP synthesis.
在合成细胞中维持类生命过程的关键步骤之一是能量,即三磷酸腺苷(ATP)再生。先前的研究表明,简单添加ATP或不能直接从ADP和磷酸再生ATP的ATP再生系统,由于ATP水解产物的积累,没有成功或只有有限的成功。一般来说,ATP再生可以通过将光能或化学能转化为ATP来实现,这也可能涉及辅因子的氧化还原转化。本文概述了现有的ATP再生策略以及相关的烟酰胺腺嘌呤二核苷酸(NAD)氧化还原循环,重点是分隔系统。特别关注那些开发所谓人工细胞器的方法。它们包括由生物或人造成分功能化的半透膜,并利用光或营养物质形式的外部能量来产生跨膜质子梯度,该梯度进一步用于ATP合成。