Suppr超能文献

具有5-苯基-1-吲哚片段的强效选择性HDAC6抑制剂的发现:虚拟筛选、合理设计及生物学评价

Discovery of Potent Selective HDAC6 Inhibitors with 5-Phenyl-1-indole Fragment: Virtual Screening, Rational Design, and Biological Evaluation.

作者信息

Li Xuedong, Wang Chengzhao, Chai Xu, Liu Xingang, Qiao Kening, Fu Yan, Jin Yanzhao, Jia Qingzhong, Zhu Feng, Zhang Yang

机构信息

School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China.

College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China.

出版信息

J Chem Inf Model. 2024 Aug 12;64(15):6147-6161. doi: 10.1021/acs.jcim.4c01052. Epub 2024 Jul 23.

Abstract

Among the HDACs family, histone deacetylase 6 (HDAC6) has attracted extensive attention due to its unique structure and biological functions. Numerous studies have shown that compared with broad-spectrum HDACs inhibitors, selective HDAC6 inhibitors exert ideal efficacy in tumor treatment with insignificant toxic and side effects, demonstrating promising clinical application prospect. Herein, we carried out rational drug design by integrating a deep learning model, molecular docking, and molecular dynamics simulation technology to construct a virtual screening process. The designed derivatives with 5-phenyl-1-indole fragment as Cap showed desirable cytotoxicity to the various tumor cell lines, all of which were within 15 μM (ranging from 0.35 to 14.87 μM), among which compound had the best antiproliferative activities against HL-60 (IC = 0.35 ± 0.07 μM) and arrested HL-60 cells in the G0/G1 phase. In addition, exhibited better isotype selective inhibitory activities due to the potent potency against HDAC6 (IC = 5.16 ± 0.25 nM) and the reduced inhibitory activities against HDAC1 (selective index ≈ 124), which was further verified by immunoblotting results. Moreover, the representative binding conformation of on HDAC6 was revealed and the key residues contributing 's binding were also identified via decomposition free-energy analysis. The discovery of lead compound also indicates that virtual screening is still a beneficial tool in drug discovery and can provide more molecular skeletons with research potential for drug design, which is worthy of widespread application.

摘要

在组蛋白去乙酰化酶(HDACs)家族中,组蛋白去乙酰化酶6(HDAC6)因其独特的结构和生物学功能而备受关注。大量研究表明,与广谱HDACs抑制剂相比,选择性HDAC6抑制剂在肿瘤治疗中具有理想的疗效,且毒副作用不明显,展现出良好的临床应用前景。在此,我们通过整合深度学习模型、分子对接和分子动力学模拟技术进行合理药物设计,构建了一个虚拟筛选过程。设计的以5-苯基-1-吲哚片段为帽的衍生物对多种肿瘤细胞系显示出理想的细胞毒性,所有细胞毒性均在15 μM以内(范围为0.35至14.87 μM),其中化合物对HL-60细胞具有最佳的抗增殖活性(IC = 0.35 ± 0.07 μM),并使HL-60细胞停滞在G0/G1期。此外,由于对HDAC6具有强效抑制作用(IC = 5.16 ± 0.25 nM)且对HDAC1的抑制活性降低(选择性指数≈124),表现出更好的亚型选择性抑制活性,免疫印迹结果进一步验证了这一点。此外,通过分解自由能分析揭示了在HDAC6上的代表性结合构象,并确定了有助于结合的关键残基。先导化合物的发现还表明,虚拟筛选仍然是药物发现中的一种有益工具,可为药物设计提供更多具有研究潜力的分子骨架,值得广泛应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验