Shih David, Freytsis Marat, Taylor Stephen R, Dror Jeff A, Smyth Nolan
New High Energy Theory Center, <a href="https://ror.org/05vt9qd57">Rutgers University</a>, Piscataway, New Jersey 08854-8019, USA.
LEPP, Department of Physics, <a href="https://ror.org/05bnh6r87">Cornell University</a>, Ithaca, New York 14853, USA.
Phys Rev Lett. 2024 Jul 5;133(1):011402. doi: 10.1103/PhysRevLett.133.011402.
Pulsar timing arrays perform Bayesian posterior inference with expensive Markov chain Monte Carlo (MCMC) methods. Given a dataset of ∼10-100 pulsars and O(10^{3}) timing residuals each, producing a posterior distribution for the stochastic gravitational wave background (SGWB) can take days to a week. The computational bottleneck arises because the likelihood evaluation required for MCMC is extremely costly when considering the dimensionality of the search space. Fortunately, generating simulated data is fast, so modern simulation-based inference techniques can be brought to bear on the problem. In this Letter, we demonstrate how conditional normalizing flows trained on simulated data can be used for extremely fast and accurate estimation of the SGWB posteriors, reducing the sampling time from weeks to a matter of seconds.
脉冲星计时阵列使用计算成本高昂的马尔可夫链蒙特卡罗(MCMC)方法进行贝叶斯后验推断。对于一个包含约10至100颗脉冲星且每颗脉冲星有O(10³)个计时残差的数据集,生成随机引力波背景(SGWB)的后验分布可能需要数天至一周时间。计算瓶颈的出现是因为考虑到搜索空间的维度,MCMC所需的似然性评估成本极高。幸运的是,生成模拟数据速度很快,因此现代基于模拟的推断技术可用于解决该问题。在本信函中,我们展示了如何将在模拟数据上训练的条件归一化流用于SGWB后验的极快速且准确的估计,将采样时间从数周缩短至仅几秒。