Suppr超能文献

揭示矩阵乘积态的稳定子群。

Unveiling the Stabilizer Group of a Matrix Product State.

作者信息

Lami Guglielmo, Collura Mario

机构信息

<a href="https://ror.org/004fze387">International School for Advanced Studies (SISSA)</a>, 34136 Trieste, Italy.

Laboratoire de Physique Théorique et Modélisation, <a href="https://ror.org/043htjv09">CY Cergy Paris Université</a>, CNRS, F-95302 Cergy-Pontoise, France.

出版信息

Phys Rev Lett. 2024 Jul 5;133(1):010602. doi: 10.1103/PhysRevLett.133.010602.

Abstract

We present a novel classical algorithm designed to learn the stabilizer group-namely, the group of Pauli strings for which a state is a ±1 eigenvector-of a given matrix product state (MPS). The algorithm is based on a clever and theoretically grounded biased sampling in the Pauli (or Bell) basis. Its output is a set of independent stabilizer generators whose total number is directly associated with the stabilizer nullity, notably a well-established nonstabilizer monotone. We benchmark our method on T-doped states randomly scrambled via Clifford unitary dynamics, demonstrating very accurate estimates up to highly entangled MPS with bond dimension χ∼10^{3}. Our method, thanks to a very favorable scaling O(χ^{3}), represents the first effective approach to obtain a genuine magic monotone for MPS, enabling systematic investigations of quantum many-body physics out of equilibrium.

摘要

我们提出了一种新颖的经典算法,旨在学习给定矩阵乘积态(MPS)的稳定器群,即状态为±1本征向量的泡利字符串群。该算法基于泡利(或贝尔)基下巧妙且有理论依据的有偏采样。其输出是一组独立的稳定器生成元,其总数与稳定器零度直接相关,特别是一种成熟的非稳定器单调量。我们通过克利福德幺正动力学对随机加扰的T掺杂态进行方法基准测试,证明对于高达具有键维度χ∼10³的高度纠缠MPS,估计非常准确。我们的方法由于具有非常有利的O(χ³)缩放比例,代表了获得MPS真正魔法单调量的第一种有效方法,能够对非平衡态的量子多体物理进行系统研究。

相似文献

1
Unveiling the Stabilizer Group of a Matrix Product State.揭示矩阵乘积态的稳定子群。
Phys Rev Lett. 2024 Jul 5;133(1):010602. doi: 10.1103/PhysRevLett.133.010602.
4
Nonstabilizerness via Matrix Product States in the Pauli Basis.泡利基下通过矩阵乘积态的非稳定性
Phys Rev Lett. 2024 Jul 5;133(1):010601. doi: 10.1103/PhysRevLett.133.010601.
7
Efficient Quantum Algorithms for Stabilizer Entropies.用于稳定器熵的高效量子算法
Phys Rev Lett. 2024 Jun 14;132(24):240602. doi: 10.1103/PhysRevLett.132.240602.
8
Quantum advantage of unitary Clifford circuits with magic state inputs.具有魔态输入的酉克利福德电路的量子优势。
Proc Math Phys Eng Sci. 2019 May;475(2225):20180427. doi: 10.1098/rspa.2018.0427. Epub 2019 May 15.
9
Quantifying magic for multi-qubit operations.量化多量子比特操作的神奇之处。
Proc Math Phys Eng Sci. 2019 Jul;475(2227):20190251. doi: 10.1098/rspa.2019.0251. Epub 2019 Jul 31.

引用本文的文献

1
Magic spreading in random quantum circuits.魔法在随机量子电路中的传播。
Nat Commun. 2025 Mar 15;16(1):2575. doi: 10.1038/s41467-025-57704-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验