Suppr超能文献

用于水系锌离子电池稳定阳极的n型氟化氧化锌界面相的构建

Construction of an n-Type Fluorinated ZnO Interfacial Phase for a Stable Anode of Aqueous Zinc-Ion Batteries.

作者信息

Guo Dongfang, Li Zijiong, Zhang Bin, Sun Haibin

机构信息

School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China.

School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 7;16(31):40936-40947. doi: 10.1021/acsami.4c06463. Epub 2024 Jul 23.

Abstract

Aqueous rechargeable zinc-ion batteries have become an ideal solution for the next generation of energy storage systems due to their low cost and high safety. However, the uncontrollable zinc dendrites and harmful side reactions of metal zinc anodes hinder the further development of aqueous zinc-ion batteries. In this work, the artificial fluoride zinc oxide (F-ZnO) interface phase is integrated in situ on the surface of zinc foil. The F-ZnO interface phase significantly inhibits the side reactions on the surface of the zinc electrode by reducing the direct contact between the electrolyte and the surface of the zinc foil. In addition, F-ZnO modified by a small amount of F doping shows enhanced conductivity and electron transport capacity, avoiding the accumulation of high concentration Zn on the anode surface, and ultimately promoting the efficient nucleation and orderly deposition of a zinc anode. The cycle life of the symmetrical cell based on F-ZnO is as high as 2600 cycles at an area current density of 4 mA cm, which is much better than that of a commercial pure Zn electrode. The modified F-ZnO@Zn anode truly achieves the purpose of prolonging the anode's life.

摘要

水系可充电锌离子电池因其低成本和高安全性,已成为下一代储能系统的理想解决方案。然而,金属锌负极不可控的锌枝晶和有害副反应阻碍了水系锌离子电池的进一步发展。在这项工作中,人工氟氧化锌(F-ZnO)界面相原位集成在锌箔表面。F-ZnO界面相通过减少电解质与锌箔表面的直接接触,显著抑制了锌电极表面的副反应。此外,少量F掺杂改性的F-ZnO表现出增强的导电性和电子传输能力,避免了高浓度Zn在阳极表面的积累,最终促进了锌阳极的高效形核和有序沉积。基于F-ZnO的对称电池在面积电流密度为4 mA cm时的循环寿命高达2600次循环,远优于商业纯Zn电极。改性后的F-ZnO@Zn阳极真正实现了延长阳极寿命的目的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验