Lv Jiaze, Wang Qiannan, OuYang Mingwei, Cao Yan
School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41570-41582. doi: 10.1021/acsami.4c09387. Epub 2024 Jul 23.
Sodium-metal batteries, heralded for high energy density and cost-effectiveness, are compromised by an unstable solid electrolyte interphase (SEI) and dendrite formation, which hinder practical applications. Herein, a zirconium-based metal-organic framework nanostructure coating (ZMOF-NSC) was constructed in a low-loss, flexible manner. Comprehensive studies show that ZMOF-NSC, with its periodically ordered nanochannels and organized pore structures, enhances ion transport and decreases the Na migration energy barrier, thus ensuring uniform ion flux and achieving uniform spherical deposition. Additionally, ZMOF-NSC facilitates partial desolvation, catalyzing the formation of an inorganic-rich, dual-layered SEI that effectively protects the anode and suppresses dendrite formation. Consequently, the ZMOF-NSC@Na symmetric battery exhibits an impressive lifespan of over 2500 h, demonstrating extended operational longevity. The NaV(PO)∥ZMOF-NSC@Na batteries demonstrate exceptional cycling stability with 81% capacity retention after 2000 cycles at 10 C, maintaining stability over 3000 cycles at 20 C. Moreover, the NVP∥ZMOF-NSC@Na battery achieves an energy density of 370 Wh kg and a power density of 10,484 W kg, indicating superior durability and performance. This significant finding highlights the significant potential of structured MOFs to induce a dual-layered SEI, advancing the commercialization of durable, dendrite-free sodium metal batteries. The precise design of self-assembled pore structures and surface active sites in MOFs demonstrates significant potential in advancing the commercialization of durable, dendrite-free electrodes of metal-based rechargeable batteries.
钠金属电池以其高能量密度和成本效益而备受赞誉,但由于不稳定的固体电解质界面(SEI)和枝晶形成而受到影响,这阻碍了其实际应用。在此,以低损耗、灵活的方式构建了一种锆基金属有机框架纳米结构涂层(ZMOF-NSC)。综合研究表明,ZMOF-NSC具有周期性有序的纳米通道和有组织的孔结构,可增强离子传输并降低钠迁移能垒,从而确保均匀的离子通量并实现均匀的球形沉积。此外,ZMOF-NSC促进部分去溶剂化,催化形成富含无机的双层SEI,有效保护阳极并抑制枝晶形成。因此,ZMOF-NSC@Na对称电池展现出超过2500小时的令人印象深刻的寿命,证明了其延长的运行寿命。NaV(PO)∥ZMOF-NSC@Na电池表现出卓越的循环稳定性,在10 C下2000次循环后容量保持率为81%,在20 C下3000次循环内保持稳定。此外,NVP∥ZMOF-NSC@Na电池实现了370 Wh kg的能量密度和10484 W kg的功率密度,表明其具有卓越的耐久性和性能。这一重要发现突出了结构化金属有机框架诱导双层SEI的巨大潜力,推动了耐用、无枝晶钠金属电池的商业化。金属有机框架中自组装孔结构和表面活性位点的精确设计在推进耐用、无枝晶的金属基可充电电池电极商业化方面显示出巨大潜力。