Suppr超能文献

非破坏性冷冻蛋白墨水:抗冻机制、可加工性及其在 3D 打印中的应用。

Nondestructive frozen protein ink: Antifreeze mechanism, processability, and application in 3D printing.

机构信息

College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.

Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.

出版信息

Int J Biol Macromol. 2024 Oct;277(Pt 2):134009. doi: 10.1016/j.ijbiomac.2024.134009. Epub 2024 Jul 21.

Abstract

Antifreeze peptide (AFP) including in frozen protein ink is an inevitable trend because AFP can make protein ink suitable for 3D printing after freezing. AFP-based surimi ink (ASI) was firstly investigated, and the AFP significantly enhanced 3D printability of frozen surimi ink. The rheological and textural results of ASI show that the τ, K, and n values are 321.14 Pa, 2.2259 × 10 Pa·s, and 0.19, respectively, and the rupture strength of the 3D structure is up to 217.67 g. Circular dichroism, intermolecular force, and differential scanning calorimeter show ASI has more undenatured protein after freezing when compared that surimi ink (SI), which was denatured, and the α-helix changed to a β-sheet due to the destruction of hydrogen bonds and the exposure of hydrophobic groups. The water distribution, water holding capacity, and microstructure indicate that ASI effectively binds free water after freezing, while SI has weak water binding capacity and a large amount of free water is formed. ASI is suitable for 3D printing, and can print up to 40.0 mm hollow isolation column and 50.0 mm high Wuba which is not possible with SI. The application of AFP provides guidance for 3D printing frozen protein ink in food industry.

摘要

抗冻肽 (AFP) 包括在冷冻蛋白墨水中,这是一种必然趋势,因为 AFP 可以使蛋白墨在冷冻后适用于 3D 打印。本文首先研究了基于 AFP 的鱼糜墨(ASI),结果表明 AFP 显著提高了冷冻鱼糜墨的 3D 可打印性。ASI 的流变学和质构结果表明,τ、K 和 n 值分别为 321.14 Pa、2.2259×10 Pa·s 和 0.19,3D 结构的破裂强度高达 217.67 g。圆二色性、分子间力和差示扫描量热法表明,与鱼糜墨 (SI) 相比,冷冻后的 ASI 具有更多未变性的蛋白质,SI 中的蛋白质发生了变性,由于氢键的破坏和疏水基团的暴露,α-螺旋转变为β-折叠。水的分布、持水能力和微观结构表明,ASI 有效地结合了冷冻后的自由水,而 SI 具有较弱的水结合能力,形成了大量的自由水。ASI 适用于 3D 打印,可以打印高达 40.0 mm 的空心隔离柱和 50.0 mm 高的“Wuba”,而 SI 则无法实现。AFP 的应用为食品工业中冷冻蛋白墨的 3D 打印提供了指导。

相似文献

1
Nondestructive frozen protein ink: Antifreeze mechanism, processability, and application in 3D printing.
Int J Biol Macromol. 2024 Oct;277(Pt 2):134009. doi: 10.1016/j.ijbiomac.2024.134009. Epub 2024 Jul 21.
2
Analysis of the shape retention ability of antifreeze peptide-based surimi 3D structures: Potential in freezing and thawing cycles.
Food Chem. 2023 Mar 30;405(Pt A):134780. doi: 10.1016/j.foodchem.2022.134780. Epub 2022 Oct 28.
4
Regulatory mechanisms governing collagen peptides and their 3D printing application for frozen surimi.
J Food Sci. 2022 Jun;87(6):2692-2706. doi: 10.1111/1750-3841.16183. Epub 2022 May 19.
5
Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
J Food Sci. 2018 Dec;83(12):2923-2932. doi: 10.1111/1750-3841.14391. Epub 2018 Dec 2.
6
Effect of antifreeze protein on the quality and microstructure of frozen chicken breasts.
Food Chem. 2023 Mar 15;404(Pt A):134555. doi: 10.1016/j.foodchem.2022.134555. Epub 2022 Oct 10.
8
Effect of a collagen peptide-fish oil high internal phase emulsion on the printability and gelation of 3D-printed surimi gel inks.
Food Chem. 2024 Jul 15;446:138810. doi: 10.1016/j.foodchem.2024.138810. Epub 2024 Feb 22.
9
Applications of physical and chemical treatments in plant-based gels for food 3D printing.
J Food Sci. 2024 Jul;89(7):3917-3934. doi: 10.1111/1750-3841.17101. Epub 2024 Jun 3.
10
Advancements in 3D food printing: a comprehensive overview of properties and opportunities.
Crit Rev Food Sci Nutr. 2022;62(17):4752-4768. doi: 10.1080/10408398.2021.1878103. Epub 2021 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验