Suppr超能文献

使用静电模拟和机器学习方法的具有介电常数工程化双层膜的卓越电粘附力。

Superior electroadhesion force with permittivity-engineered bilayer films using electrostatic simulation and machine learning approaches.

作者信息

Park Seongsoo, Chang Hongjun, Kim Jaehyun, Gwak Yunki, Moon Janghyuk

机构信息

Department of Energy Systems Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.

Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gyeongbuk, 39117, Republic of Korea.

出版信息

Sci Rep. 2024 Jul 24;14(1):17026. doi: 10.1038/s41598-024-67805-0.

Abstract

Electroadhesive forces are crucial in various applications, including grasping devices, electro-sticky boards, electrostatic levitation, and climbing robots. However, the design of electroadhesive devices relies on speculative or empirical error approaches. Therefore, we present a theoretical model comprising predictive coplanar electrodes and protective layers for analyzing the electrostatic fields between an object and electroadhesive device. The model considers the role of protective layer and the air gap between the electrode surface and the object. To exert a higher electroadhesive force, the higher permeability of the protective layer is required. However, a high permeability of the protective layer is hard to withstand high applied voltage. To overcome this, two materials with different permeabilities were employed as protective layers-a low-permeability inner layer and a high-permeability outer layer-to maintain a high voltage and generate a large electroadhesive force. Because a low-permeability inner layer material was selected, a more permeable outer layer material was considered. A theoretical analysis revealed complex relationships between various design parameters. The impact of key design parameters and working environments on the electroadhesion behavior was further investigated. This study reveals the fundamental principles of electroadhesion and proposes prospective methods to enhance the design of electroadhesive devices for various engineering applications.

摘要

电粘附力在各种应用中至关重要,包括抓取装置、电粘性板、静电悬浮和攀爬机器人。然而,电粘附装置的设计依赖于推测性或经验性的试错方法。因此,我们提出了一个包含预测性共面电极和保护层的理论模型,用于分析物体与电粘附装置之间的静电场。该模型考虑了保护层的作用以及电极表面与物体之间的气隙。为了施加更高的电粘附力,需要保护层具有更高的渗透率。然而,高渗透率的保护层难以承受高施加电压。为了克服这一问题,采用了两种具有不同渗透率的材料作为保护层——低渗透率内层和高渗透率外层——以维持高电压并产生较大的电粘附力。由于选择了低渗透率的内层材料,因此考虑了更具渗透性的外层材料。理论分析揭示了各种设计参数之间的复杂关系。进一步研究了关键设计参数和工作环境对电粘附行为的影响。本研究揭示了电粘附的基本原理,并提出了前瞻性方法,以改进用于各种工程应用的电粘附装置的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06e2/11266653/8d42589107ea/41598_2024_67805_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验