Suppr超能文献

用于发现靶向FtsZ蛋白的新型抗菌剂的计算机模拟方法和生物活性评估:机器学习、虚拟筛选及抗菌机制研究

In silico method and bioactivity evaluation to discover novel antimicrobial agents targeting FtsZ protein: Machine learning, virtual screening and antibacterial mechanism study.

作者信息

Wang Linxiao, Xie Zhouling, Ruan Wei, Lan Feixiang, Qin Qi, Tu Yuanbiao, Zhu Wufu, Zhao Jing, Zheng Pengwu

机构信息

Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China.

Cancer Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.

出版信息

Naunyn Schmiedebergs Arch Pharmacol. 2025 Jan;398(1):601-616. doi: 10.1007/s00210-024-03276-4. Epub 2024 Jul 23.

Abstract

This research paper utilizes a fused-in-silico approach alongside bioactivity evaluation to identify active FtsZ inhibitors for drug discovery. Initially, ROC-guided machine learning was employed to obtain almost 13182 compounds from three libraries. After conducting virtual screening to assess the affinity of 2621 acquired compounds, cluster analysis and bonding model analysis led to the discovery of five hit compounds. Additionally, antibacterial activity assays and time-killing kinetics revealed that T3995 could eliminate Staphylococcus aureus ATCC6538 and Bacillus subtilis ATCC9732, with MIC values of 32 and 2 μg/mL. Further morphology and FtsZ polymerization assays indicated that T3995 could be an antimicrobial inhibitor by targeting FtsZ protein. Moreover, hemolytic toxicity evaluation demonstrated that T3995 is safe at or below 16 ug/mL concentration. Additionally, bonding model analysis explained how the compound T3995 can display antimicrobial activity by targeting the FtsZ protein. In conclusion, this study presents a promising FtsZ inhibitor that was discovered through a fused computer method and bioactivity evaluation.

摘要

本研究论文采用计算机模拟与生物活性评估相结合的方法,以鉴定用于药物发现的活性FtsZ抑制剂。最初,利用ROC引导的机器学习从三个文库中获取了近13182种化合物。在对获得的2621种化合物进行虚拟筛选以评估其亲和力后,通过聚类分析和键合模型分析发现了5种有活性的化合物。此外,抗菌活性测定和时间杀菌动力学表明,T3995能够消除金黄色葡萄球菌ATCC6538和枯草芽孢杆菌ATCC9732,其MIC值分别为32和2μg/mL。进一步的形态学和FtsZ聚合分析表明,T3995可能是一种通过靶向FtsZ蛋白发挥作用的抗菌抑制剂。此外,溶血毒性评估表明,T3995在浓度为16μg/mL及以下时是安全的。此外,键合模型分析解释了化合物T3995如何通过靶向FtsZ蛋白发挥抗菌活性。总之,本研究通过计算机模拟方法与生物活性评估相结合,发现了一种有前景的FtsZ抑制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验