Gong Tai, Zhu Xijing, Ye Linzheng, Fu Yingze
Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan, 030051, Shanxi, China.
School of Mechanical Engineering, North University of China, Taiyuan, 030051, Shanxi, China.
Sci Rep. 2024 Jul 23;14(1):16956. doi: 10.1038/s41598-024-68128-w.
In the field of power ultrasonic vibration processing, the thin liquid layer nestled between the tool head and the material serves as a hotbed for cavitation shock wave emissions that significantly affect the material's surface. The precise manipulation of these emissions presents a formidable challenge, stemming from a historical deficit in the quantitative analysis of both the ultrasonic enhancement effect and the shock wave intensity within this niche environment. Our study addresses this gap by innovatively modifying the Gilmore-Akulichev equation, laying the groundwork for a sophisticated bubble dynamics model and a pioneering shock wave propagation model tailored to the thin liquid layer domain. Firstly, our study investigated the ultrasound enhancement effect under various parameters of thin liquid layers, revealing an amplification of ultrasound pressure in the thin liquid layer area by up to 7.47 times. The mathematical model was solved using the sixth-order Runge-Kutta method to examine shock wave velocity and pressure under different conditions. our study identified that geometric parameters of the tool head, thin liquid layer thickness, ultrasonic frequency, and initial bubble radius all significantly influenced shock wave emission. At an ultrasonic frequency of 60 kHz, the shock wave pressure at the measurement point exhibited a brief decrease from 182.6 to 179.5 MPa during an increase. Furthermore, rapid attenuation of the shock wave was found within the range of R-3R from the bubble wall. This research model aims to enhance power ultrasonic vibration processing technology, and provide theoretical support for applications in related fields.
在功率超声振动加工领域,位于工具头和材料之间的薄液层是产生空化冲击波的温床,这些冲击波会对材料表面产生显著影响。精确控制这些冲击波的产生是一项艰巨的挑战,这源于在这个特定环境中对超声增强效应和冲击波强度的定量分析一直存在不足。我们的研究通过创新性地修改吉尔摩 - 阿库利切夫方程来填补这一空白,为针对薄液层领域的复杂气泡动力学模型和开创性的冲击波传播模型奠定基础。首先,我们的研究调查了薄液层在各种参数下的超声增强效应,发现薄液层区域的超声压力放大倍数高达7.47倍。使用六阶龙格 - 库塔方法求解数学模型,以研究不同条件下的冲击波速度和压力。我们的研究确定,工具头的几何参数、薄液层厚度、超声频率和初始气泡半径都对冲击波的产生有显著影响。在超声频率为60kHz时,测量点处的冲击波压力在增加过程中从182.6MPa短暂降至179.5MPa。此外,在距气泡壁R - 3R范围内发现冲击波迅速衰减。该研究模型旨在提高功率超声振动加工技术,并为相关领域的应用提供理论支持。