Suppr超能文献

用于超声空化喷丸的薄气泡液层中超声声场的理论与实验研究。

Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening.

作者信息

Bai Fushi, Long Yangyang, Saalbach Kai-Alexander, Twiefel Jens

机构信息

Institute of Dynamics and Vibration Research, Leibniz University Hannover, Appelstr. 11, Hannover 30167, Germany.

Institute of Dynamics and Vibration Research, Leibniz University Hannover, Appelstr. 11, Hannover 30167, Germany.

出版信息

Ultrasonics. 2019 Mar;93:130-138. doi: 10.1016/j.ultras.2018.11.010. Epub 2018 Nov 27.

Abstract

Ultrasonic cavitation peening is a potential surface enhancement process. During this process a high input power is necessary to obtain an effective process result. A small gap, usually less than 1 mm, between the sonotrode tip and the treated surface is also required to avoid substantial energy loss. Due to the high vibration of the sonotrode, many cavitation bubbles are generated, forming a thin bubbly liquid layer in the small gap. The cavitation bubbles in the layer seriously disturb the sound wave propagation and interact with each other. The disturbances and interactions change the intensity and the spatial distribution of cavitation bubbles, resulting in the different interactions between cavitation bubbles and workpiece surfaces. The variations of the interactions cause different surface properties of the workpieces after ultrasonic cavitation peening. Therefore, quantifying the ultrasound field in different conditions is of great important to improve the ultrasonic cavitation peening process. A current model of the sound propagation in the bubbly liquid was already developed but did not include the bubble interactions. In this work, the bubble interactions are taken into account to improve the current model. The calculated results of the sound field with the improved model are validated by sonochemiluminescence experiments in various standoff distances and vibration amplitudes. Both of the experimental and the calculated results show that the highest sound pressure is generated when the vibration amplitude is around 25 µm. The strongest cavitation intensity occurs at the gap width of 0.5-0.7 mm.

摘要

超声空化喷丸是一种潜在的表面强化工艺。在该工艺过程中,需要高输入功率才能获得有效的工艺结果。超声变幅杆尖端与被处理表面之间通常需要小于1毫米的小间隙,以避免大量能量损失。由于超声变幅杆的高振动,会产生许多空化气泡,在小间隙中形成一层薄的气泡液层。该层中的空化气泡严重干扰声波传播并相互作用。这些干扰和相互作用改变了空化气泡的强度和空间分布,导致空化气泡与工件表面之间产生不同的相互作用。相互作用的变化导致超声空化喷丸处理后工件具有不同的表面性能。因此,量化不同条件下的超声场对于改进超声空化喷丸工艺非常重要。目前已经建立了气泡液体中声传播的模型,但未考虑气泡相互作用。在这项工作中,考虑了气泡相互作用以改进当前模型。通过在不同的间距和振动幅度下进行声致化学发光实验,验证了改进模型的声场计算结果。实验结果和计算结果均表明,当振动幅度约为25微米时会产生最高声压。最强的空化强度出现在间隙宽度为0.5 - 0.7毫米时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验