Barrett E L, Kwan H S
Annu Rev Microbiol. 1985;39:131-49. doi: 10.1146/annurev.mi.39.100185.001023.
Trimethylamine oxide, which is found in relatively high concentrations in the tissues of marine animals, serves as an electron acceptor in the anaerobic metabolism of a number of bacteria associated primarily with three environments: the marine environment (e.g. Alteromonas and Vibrio), the brackish pond (nonsulfur photosynthetic bacteria), and animal intestines (Enterobacteriaceae). Its reduction to trimethylamine by such bacteria can constitute a major spoilage reaction during the storage of marine fish. In the Enterobacteriaceae, anaerobic respiration with TMAO has been shown to support oxidative phosphorylation. Electron transport to TMAO in these bacteria involves flavin nucleotides, menaquinones, both b- and c-type cytochromes, and a molybdoenzyme reductase. Formate, hydrogen, lactate, and glycerol all serve as electron donors for TMAO respiration. Electrophoretically distinct constitutive and TMAO-induced reductases are synthesized by both E. coli and S. typhimurium. Electron transport to TMAO is repressed both by air and by nitrate. A number of genes involved in TMAO respiration have been mapped, but the structural gene for the inducible TMAO reductase has not yet been firmly established. Oxidative phosphorylation is also supported by TMAO reduction in Alteromonas. In this organism, which is nonfermentative, TMAO respiration resembles aerobic respiration in that intermediates of the TCA cycle are excellent electron donors. Alteromonas exhibits a requirement for NaCl for growth on TMAO and certain electron donors. As in the Enterobacteriaceae, air and nitrate both interfere with TMAO reduction. The role of TMAO reduction in the anaerobic metabolism of nonsulfur purple bacteria has not yet been resolved; it is not clear if TMAO serves simply as an accessory oxidant for fermentation or if TMAO reduction is associated with energy-yielding membrane-bound electron transport. Some of the confusion regarding this bacterial group stems from the fact that much of the work to date has involved parallel studies of TMAO and dimethyl sulfoxide reduction, and it is not yet known whether the two compounds are reduced by the same enzyme. Although our understanding of bacterial TMAO reduction lags far behind our knowledge of bacterial nitrate reduction, it is unlikely that this will always be the case.(ABSTRACT TRUNCATED AT 400 WORDS)
氧化三甲胺在海洋动物组织中含量相对较高,在一些主要与三种环境相关的细菌的厌氧代谢中作为电子受体:海洋环境(如交替单胞菌属和弧菌属)、咸淡水池塘(非硫光合细菌)以及动物肠道(肠杆菌科)。这些细菌将其还原为三甲胺的过程可能是海鱼储存期间的主要腐败反应。在肠杆菌科中,已证明以氧化三甲胺进行厌氧呼吸可支持氧化磷酸化。这些细菌中向氧化三甲胺的电子传递涉及黄素核苷酸、甲萘醌、b型和c型细胞色素以及一种钼酶还原酶。甲酸、氢气、乳酸和甘油均可作为氧化三甲胺呼吸的电子供体。大肠杆菌和鼠伤寒沙门氏菌都会合成电泳性质不同的组成型和氧化三甲胺诱导型还原酶。向氧化三甲胺的电子传递会受到空气和硝酸盐的抑制。已对一些参与氧化三甲胺呼吸的基因进行了定位,但诱导型氧化三甲胺还原酶基因的结构尚未完全确定。在交替单胞菌属中,氧化三甲胺的还原也支持氧化磷酸化。在这种非发酵型生物体中,氧化三甲胺呼吸类似于有氧呼吸,因为三羧酸循环的中间产物是优良的电子供体。交替单胞菌属在以氧化三甲胺和某些电子供体为底物生长时需要氯化钠。与肠杆菌科一样,空气和硝酸盐都会干扰氧化三甲胺的还原。氧化三甲胺还原在非硫紫色细菌厌氧代谢中的作用尚未明确;目前尚不清楚氧化三甲胺是否仅作为发酵的辅助氧化剂,或者氧化三甲胺的还原是否与产生能量的膜结合电子传递有关。关于这类细菌的一些困惑源于这样一个事实,即迄今为止的许多研究都涉及对氧化三甲胺和二甲基亚砜还原的平行研究,而且尚不清楚这两种化合物是否由同一种酶还原。尽管我们对细菌氧化三甲胺还原的了解远远落后于对细菌硝酸盐还原的认识,但这种情况不太可能一直持续下去。(摘要截选至400字)