Giousis Theodosis, Zygouri Panagiota, Karouta Niki, Spyrou Konstantinos, Subrati Mohammed, Moschovas Dimitrios, Stuart Marc C A, Hemmatpour Hamoon, Gournis Dimitrios P, Rudolf Petra
Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110, Greece.
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, the Netherlands.
Small. 2024 Nov;20(45):e2403277. doi: 10.1002/smll.202403277. Epub 2024 Jul 24.
Group-14 Xenes beyond graphene such as silicene, germanene, and stanene have recently gained a lot of attention for their peculiar electronic properties, which can be tuned by covalent functionalization. Up until now, reported methods for the top-down synthesis of covalently functionalized silicene and germanene typically yield multilayered flakes with a minimum thickness of 100 nm. Herein, the ex situ covalent functionalization of germanene (fGe) is reported via 1,3-dipolar cycloaddition of the azomethine ylide generated by the decarboxylative condensation of 3,4-dihydroxybenzaldehyde and sarcosine. Amorphous few-layered sheets (average thickness of ≈6 nm) of dipolarophile germanene (GeX) are produced by thermal dehydrogenation of its fully saturated parent precursor, germanane (GeH). Spectroscopic evidence confirmed the emergence of the dipolarophilic sp domains due to the dehydrogenation of germanane, and their sp hybridization due to the covalent functionalization of germanene. Elemental mapping of the functionalized germanene revealed flakes with a very high abundance of carbon uniformly covering the germanium backbone. The 500 meV increase of the optical bandgap of germanene observed upon functionalization paves the way toward bandgap engineering of other group-14 Xenes, which could potentially be a major turning point in the fields of electronics, electrocatalysis, and photocatalysis.
除石墨烯之外的第14族烯类,如硅烯、锗烯和锡烯,因其独特的电子特性最近备受关注,这些特性可通过共价功能化进行调控。到目前为止,报道的自上而下合成共价功能化硅烯和锗烯的方法通常会产生最小厚度为100 nm的多层薄片。在此,通过3,4-二羟基苯甲醛与肌氨酸的脱羧缩合产生的甲亚胺叶立德的1,3-偶极环加成反应,报道了锗烯(fGe)的非原位共价功能化。通过其完全饱和的母体前驱体锗烷(GeH)的热脱氢反应,生成了亲偶极体锗烯(GeX)的非晶态少层薄片(平均厚度约为6 nm)。光谱证据证实了由于锗烷脱氢产生的亲偶极体sp域的出现,以及由于锗烯的共价功能化导致的它们的sp杂化。功能化锗烯的元素映射显示,薄片上有非常高丰度的碳均匀覆盖锗骨架。功能化后观察到锗烯的光学带隙增加了500 meV,这为其他第14族烯类的带隙工程铺平了道路,这可能是电子学、电催化和光催化领域的一个重大转折点。