Takeda Youhei
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan.
Acc Chem Res. 2024 Aug 6;57(15):2219-2232. doi: 10.1021/acs.accounts.4c00353. Epub 2024 Jul 24.
ConspectusModulating the photophysical properties of organic emitters through molecular design is a fundamental endeavor in materials science. A critical aspect of this process is the control of the excited-state energy, which is essential for the development of triplet exciton-harvesting organic emitters, such as those with thermally activated delayed fluorescence and room-temperature phosphorescence. These emitters are pivotal for developing highly efficient organic light-emitting diodes and bioimaging probes. A particularly promising class of these emitters consists of twisted donor-acceptor organic π-conjugated scaffolds. These structures facilitate a spatial separation of the frontier molecular orbitals, which is crucial for achieving a narrow singlet-triplet energy gap. This narrow gap is necessary to overcome the endothermic reverse intersystem crossing process, enhancing the efficiency of thermally activated delayed fluorescence. To precisely modulate the photophysical properties of these emitting materials, it is essential to understand the electronic structures of new donor-acceptor scaffolds, especially those influenced by heteroatoms, as well as their conformations and topologies. This understanding not only improves the efficiency of these emitters but also expands their potential applications in advance technologies.In 2014, the Takeda group made a significant breakthrough by discovering a novel method for synthesizing U-shaped diazaacenes (dibenzo[]phenazine) through an oxidative skeletal rearrangement of 1,1'-binaphthalene-2,2'-diamines. This class of compounds is typically challenging to synthesize using conventional organic reactions. The resulting unique geometric and electronic structure of U-shaped diazaacenes opened new possibilities for photophysical applications. Leveraging the U-shaped structure, photoluminescent properties, and high electron affinity, we developed twisted donor-acceptor-donor compounds. These compounds exhibit efficient thermally activated delayed fluorescence, stimuli-responsive luminochromism, heavy atom-free room-temperature phosphorescence, and anion-responsive red shifts. These innovative emitters have demonstrated significant potential in various practical applications, including organic light-emitting diode devices and advanced sensing systems.In this Account, I summarize our achievements in modulating the photofunctions of dibenzo[]phenazine-cored twisted donor-acceptor-donor compounds by controlling excited-state singlet-triplet energy gaps through conformational regulation. Our comprehensive studies revealed the significant impact of heteroatoms, molecular conformations, and topologies on the photophysics of these compounds. These findings highlight the importance of molecular engineering in tailoring the photophysical properties of organic donor-acceptor π-conjugated materials for specific applications. Our research has demonstrated that incorporating heteroatoms into the molecular framework effectively tunes the electronic properties and, consequently, the photophysical behavior of the compounds. Understanding the influence of heteroatoms, conformational dynamics, and molecular topology on excited-state behavior will open new avenues for next-generation optoelectronic devices and biological technologies. These advancements include ultra-low-power displays, photonic communication, and super-resolution biomedical imaging. Ultimately, our work highlights the potential of strategic molecular design in driving innovation across various fields, paving the way for the development of cutting-edge technologies that leverage the unique properties of organic emitters.
概述
通过分子设计来调控有机发光体的光物理性质是材料科学中的一项基础工作。这一过程的一个关键方面是对激发态能量的控制,这对于开发三重态激子捕获有机发光体至关重要,例如那些具有热激活延迟荧光和室温磷光的发光体。这些发光体对于开发高效有机发光二极管和生物成像探针至关重要。这类发光体中一类特别有前景的是扭曲的供体 - 受体有机π共轭骨架。这些结构有助于前沿分子轨道的空间分离,这对于实现窄的单重态 - 三重态能隙至关重要。这个窄能隙对于克服吸热的反向系间窜越过程是必要的,从而提高热激活延迟荧光的效率。为了精确调控这些发光材料的光物理性质,了解新型供体 - 受体骨架的电子结构至关重要,尤其是那些受杂原子影响的结构,以及它们的构象和拓扑结构。这种理解不仅提高了这些发光体的效率,还扩展了它们在先进技术中的潜在应用。
2014年,武田小组取得了重大突破,发现了一种通过1,1'-联萘 - 2,2'-二胺的氧化骨架重排合成U形二氮杂蒽(二苯并[]吩嗪)的新方法。这类化合物使用传统有机反应通常很难合成。所得U形二氮杂蒽独特的几何和电子结构为光物理应用开辟了新的可能性。利用U形结构、光致发光性质和高电子亲和力,我们开发了扭曲的供体 - 受体 - 供体化合物。这些化合物表现出高效的热激活延迟荧光、刺激响应性发光变色、无重原子的室温磷光以及阴离子响应性红移。这些创新的发光体在各种实际应用中已显示出巨大潜力,包括有机发光二极管器件和先进传感系统。
在本综述中,我总结了我们通过构象调控控制激发态单重态 - 三重态能隙来调节二苯并[]吩嗪核心的扭曲供体 - 受体 - 供体化合物光功能方面的成就。我们的综合研究揭示了杂原子、分子构象和拓扑结构对这些化合物光物理性质的重大影响。这些发现突出了分子工程在为特定应用定制有机供体 - 受体π共轭材料光物理性质方面的重要性。我们的研究表明,将杂原子纳入分子框架可有效调节电子性质,进而调节化合物的光物理行为。了解杂原子、构象动力学和分子拓扑对激发态行为的影响将为下一代光电器件和生物技术开辟新途径。这些进展包括超低功耗显示器、光子通信和超分辨率生物医学成像。最终,我们的工作突出了战略分子设计在推动各个领域创新方面的潜力,为利用有机发光体独特性质的前沿技术发展铺平了道路。