Suppr超能文献

在Cu-SSZ-13@Ce-MnO/介孔二氧化硅催化剂上构建多功能界面工程以提高活性、耐硫性和水热稳定性。

Construction of multifunctional interface engineering on Cu-SSZ-13@Ce-MnO/Mesoporous-silica catalyst for boosting activity, SO tolerance and hydrothermal stability.

作者信息

Chen Zhiqiang, Wang Hang, Zhang Xinjia, Wu Mei, Qu Hongxia

机构信息

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

J Hazard Mater. 2024 Sep 15;477:135268. doi: 10.1016/j.jhazmat.2024.135268. Epub 2024 Jul 20.

Abstract

Although small pore Cu-SSZ-13 catalysts have been successful as commercial catalysts for controlling NO emissions from mobile sources, the challenges of high light-off temperature, SO tolerance and hydrothermal stability still need to be addressed. Here, we synthesized a multifunctional core-shell catalyst with Cu-SSZ-13 as the core phase and Ce-MnO supported Mesoporous-silica (Meso-SiO) as the shell phase via self-assembly and impregnation. The core-shell catalyst exhibited excellent low-temperature activity, SO tolerance and hydrothermal stability compared to the Cu-SSZ-13. The Ce-MnO species dispersed in the shell are found to enhance both the acidic and oxidative properties of the core-shell catalyst. More critically, these species can rapidly activate NO and oxidize it to NO, which allows the NH-SCR reaction on the core-shell catalyst to be initiated in the shell phase. Meanwhile, Ce-MnO species can react preferentially with SO as sacrifice components, effectively avoiding the sulfur inactivation of the copper active sites. Furthermore, the hydrophobic Meso-SiO shell provides an important barrier for the core phase, which reduces the loss of active species, acid sites and framework Al of the aged core-shell catalyst and mitigates the collapse of the zeolite framework. This work provides a new strategy for the design of novel and efficient NH-SCR catalysts.

摘要

尽管小孔径的Cu-SSZ-13催化剂作为控制移动源NO排放的商业催化剂已取得成功,但高光起燃温度、耐SO性能和水热稳定性等挑战仍需解决。在此,我们通过自组装和浸渍法合成了一种以Cu-SSZ-13为核相、Ce-MnO负载的介孔二氧化硅(Meso-SiO)为壳相的多功能核壳催化剂。与Cu-SSZ-13相比,该核壳催化剂表现出优异的低温活性、耐SO性能和水热稳定性。发现分散在壳层中的Ce-MnO物种增强了核壳催化剂的酸性和氧化性能。更关键的是,这些物种能快速活化NO并将其氧化为NO₂,这使得核壳催化剂上的NH-SCR反应能在壳层相中引发。同时,Ce-MnO物种可作为牺牲组分优先与SO₂反应,有效避免铜活性位点的硫失活。此外,疏水的Meso-SiO壳层为核相提供了重要屏障,减少了老化核壳催化剂活性物种、酸性位点和骨架Al的损失,并减轻了沸石骨架的坍塌。这项工作为设计新型高效的NH-SCR催化剂提供了新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验